117 research outputs found
The cell organization underlying structural colour is involved in Flavobacterium IR1 predation.
Flavobacterium IR1 is a gliding bacterium with a high degree of colonial organization as a 2D photonic crystal, resulting in vivid structural coloration when illuminated. Enterobacter cloacae B12, an unrelated bacterium, was isolated from the brown macroalga Fucus vesiculosus from the same location as IR1. IR1 was found to be a predator of B12. A process of surrounding, infiltration, undercutting and killing of B12 supported improved growth of IR1. A combination of motility and capillarity facilitated the engulfment of B12 colonies by IR1. Predation was independent of illumination. Mutants of IR1 that formed photonic crystals less effectively than the wild type were reduced in predation. Conversely, formation of a photonic crystal was not advantageous in resisting predation by Rhodococcus spp. PIR4. These observations suggest that the organization required to create structural colour has a biological function (facilitating predation) but one that is not directly related to the photonic properties of the colony. This work is the first experimental evidence supporting a role for this widespread type of cell organization in the Flavobacteriia
Lipoprotein-associated phospholipase A2 activity, genetics and calcific aortic valve stenosis in humans.
BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity has been shown to predict calcific aortic valve stenosis (CAVS) outcomes. Our objective was to test the association between plasma Lp-PLA2 activity and genetically elevated Lp-PLA2 mass/activity with CAVS in humans. METHODS AND RESULTS: Lp-PLA2 activity was measured in 890 patients undergoing cardiac surgery, including 476 patients undergoing aortic valve replacement for CAVS and 414 control patients undergoing coronary artery bypass grafting. After multivariable adjustment, Lp-PLA2 activity was positively associated with the presence of CAVS (OR=1.21 (95% CI 1.04 to 1.41) per SD increment). We selected four single nucleotide polymorphisms (SNPs) at the PLA2G7 locus associated with either Lp-PLA2 mass or activity (rs7756935, rs1421368, rs1805017 and rs4498351). Genetic association studies were performed in eight cohorts: Quebec-CAVS (1009 cases/1017 controls), UK Biobank (1350 cases/349 043 controls), European Prospective Investigation into Cancer and Nutrition-Norfolk (504 cases/20 307 controls), Genetic Epidemiology Research on Aging (3469 cases/51 723 controls), Malmö Diet and Cancer Study (682 cases/5963 controls) and three French cohorts (3123 cases/6532 controls), totalling 10 137 CAVS cases and 434 585 controls. A fixed-effect meta-analysis using the inverse-variance weighted method revealed that none of the four SNPs was associated with CAVS (OR=0.99 (95% CI 0.96 to 1.02, p=0.55) for rs7756935, 0.97 (95% CI 0.93 to 1.01, p=0.11) for rs1421368, 1.00 (95% CI 1.00 to 1.01, p=0.29) for rs1805017, and 1.00 (95% CI 0.97 to 1.04, p=0.87) for rs4498351). CONCLUSIONS: Higher Lp-PLA2 activity is significantly associated with the presence of CAVS and might represent a biomarker of CAVS in patients with heart disease. Results of our genetic association study suggest that Lp-PLA2 is however unlikely to represent a causal risk factor or therapeutic target for CAVS
Progression of Hypertrophy and Myocardial Fibrosis in Aortic Stenosis: A Multicenter Cardiac Magnetic Resonance Study
Background: Aortic stenosis is accompanied by progressive left ventricular hypertrophy and fibrosis. We investigated the natural history of these processes in asymptomatic patients and their potential reversal post-aortic valve replacement (AVR). Methods: Asymptomatic and symptomatic patients with aortic stenosis underwent repeat echocardiography and magnetic resonance imaging. Changes in peak aortic-jet velocity, left ventricular mass index, diffuse fibrosis (indexed extracellular volume), and replacement fibrosis (late gadolinium enhancement [LGE]) were quantified. RESULTS: In 61 asymptomatic patients (43% mild, 34% moderate, and 23% severe aortic stenosis), significant increases in peak aortic-jet velocity, left ventricular mass index, indexed extracellular volume, and LGE mass were observed after 2.1±0.7 years, with the most rapid progression observed in patients with most severe stenosis. Patients with baseline midwall LGE (n=16 [26%]; LGE mass, 2.5 g [0.8–4.8 g]) demonstrated particularly rapid increases in scar burden (78% [50%–158%] increase in LGE mass per year). In 38 symptomatic patients (age, 66±8 years; 76% men) who underwent AVR, there was a 19% (11%–25%) reduction in left ventricular mass index (P<0.0001) and an 11% (4%–16%) reduction in indexed extracellular volume (P=0.003) 0.9±0.3 years after surgery. By contrast midwall LGE (n=10 [26%]; mass, 3.3 g [2.6–8.0 g]) did not change post-AVR (n=10; 3.5 g [2.1–8.0 g]; P=0.23), with no evidence of regression even out to 2 years. Conclusions: In patients with aortic stenosis, cellular hypertrophy and diffuse fibrosis progress in a rapid and balanced manner but are reversible after AVR. Once established, midwall LGE also accumulates rapidly but is irreversible post valve replacement. Given its adverse long-term prognosis, prompt AVR when midwall LGE is first identified may improve clinical outcomes
Myocardial injury following transcatheter aortic valve implantation : insights from delayed-enhancement cardiovascular magnetic resonance
Aims: The aim of this study was to evaluate the presence, localisation and extent of myocardial injury as
determined by late gadolinium enhancement (LGE) on cardiovascular magnetic resonance (CMR) imaging
in patients undergoing transcatheter aortic valve implantation (TAVI).
Methods and results: A total of 37 patients, who underwent successful TAVI with a balloon-expandable
valve (transapical [TA], n=11; non-TA, n=26), were included. Cardiac biomarker (CK-MB and cTnT) lev-
els were determined at baseline and following TAVI. CMR was performed within a week before and within
30 days following TAVI. Some increase in cardiac biomarkers was detected in 97% of the patients as deter-
mined by a rise in cTnT, and in 49% of the patients as determined by a rise in CK-MB. Following TAVI, no
new myocardial necrosis defects were observed with the non-TA approach. Nonetheless, all patients who
underwent TAVI through the TA approach had new focal myocardial necrosis in the apex, with a median myo-cardial extent and necrotic mass of 5% [2.0-7.0] and 3.5 g [2.3-4.5], respectively.
Conclusions: Although some increase in cardiac biomarkers of myocardial injury was systematically
detected following TAVI, new myocardial necrosis as evaluated by CMR was observed only in patients
undergoing the procedure through the TA approach, involving ~5% of the myocardium in the apex
Genetic Variation in LPA, Calcific Aortic Valve Stenosis in Patients Undergoing Cardiac Surgery, and Familial Risk of Aortic Valve Microcalcification.
IMPORTANCE: Genetic variants at the LPA locus are associated with both calcific aortic valve stenosis (CAVS) and coronary artery disease (CAD). Whether these variants are associated with CAVS in patients with CAD vs those without CAD is unknown. OBJECTIVE: To study the associations of LPA variants with CAVS in a cohort of patients undergoing heart surgery and LPA with CAVS in patients with CAD vs those without CAD and to determine whether first-degree relatives of patients with CAVS and high lipoprotein(a) (Lp[a]) levels showed evidence of aortic valve microcalcification. DESIGN, SETTING, AND PARTICIPANTS: This genetic association study included patients undergoing cardiac surgery from the Genome-Wide Association Study on Calcific Aortic Valve Stenosis in Quebec (QUEBEC-CAVS) study and patients with CAD, patients without CAD, and control participants from 6 genetic association studies: the UK Biobank, the European Prospective Investigation of Cancer (EPIC)-Norfolk, and Genetic Epidemiology Research on Aging (GERA) studies and 3 French cohorts. In addition, a family study included first-degree relatives of patients with CAVS. Data were collected from January 1993 to September 2018, and analysis was completed from September 2017 to September 2018. EXPOSURES: Case-control studies. MAIN OUTCOMES AND MEASURES: Presence of CAVS according to a weighted genetic risk score based on 3 common Lp(a)-raising variants and aortic valve microcalcification, defined as the mean tissue to background ratio of 1.25 or more, measured by fluorine 18-labeled sodium fluoride positron emission tomography/computed tomography. RESULTS: This study included 1009 individuals undergoing cardiac surgery and 1017 control participants in the QUEBEC-CAVS cohort; 3258 individuals with CAVS and CAD, 41 100 controls with CAD, 2069 individuals with CAVS without CAD, and 380 075 control participants without CAD in the UK Biobank, EPIC-Norfolk, and GERA studies and 3 French cohorts combined; and 33 first-degree relatives of 17 patients with CAVS and high Lp(a) levels (≥60 mg/dL) and 23 control participants with normal Lp(a) levels (<60 mg/dL). In the QUEBEC-CAVS study, each SD increase of the genetic risk score was associated with a higher risk of CAVS (odds ratio [OR], 1.35 [95% CI, 1.10-1.66]; P = .003). Each SD increase of the genetic risk score was associated with a higher risk of CAVS in patients with CAD (OR, 1.30 [95% CI, 1.20-1.42]; P < .001) and without CAD (OR, 1.33 [95% CI, 1.14-1.55]; P < .001). The percentage of individuals with a tissue to background ratio of 1.25 or more or CAVS was higher in first-degree relatives of patients with CAVS and high Lp(a) (16 of 33 [49%]) than control participants (3 of 23 [13%]; P = .006). CONCLUSIONS AND RELEVANCE: In this study, a genetically elevated Lp(a) level was associated with CAVS independently of the presence of CAD. These findings support further research on the potential usefulness of Lp(a) cascade screening in CAVS
Outcomes of Patients with Asymptomatic Aortic Stenosis Followed Up in Heart Valve Clinics
Importance: The natural history and the management of patients with asymptomatic aortic stenosis (AS) have not been fully examined in the current era. Objective: To determine the clinical outcomes of patients with asymptomatic AS using data from the Heart Valve Clinic International Database. Design, Setting, and Participants: This registry was assembled by merging data from prospectively gathered institutional databases from 10 heart valve clinics in Europe, Canada, and the United States. Asymptomatic patients with an aortic valve area of 1.5 cm2 or less and preserved left ventricular ejection fraction (LVEF) greater than 50% at entry were considered for the present analysis. Data were collected from January 2001 to December 2014, and data were analyzed from January 2017 to July 2018. Main Outcomes and Measures: Natural history, need for aortic valve replacement (AVR), and survival of asymptomatic patients with moderate or severe AS at entry followed up in a heart valve clinic. Indications for AVR were based on current guideline recommendations. Results: Of the 1375 patients included in this analysis, 834 (60.7%) were male, and the mean (SD) age was 71 (13) years. A total of 861 patients (62.6%) had severe AS (aortic valve area less than 1.0 cm2). The mean (SD) overall survival during medical management (mean [SD] follow up, 27 [24] months) was 93% (1%), 86% (2%), and 75% (4%) at 2, 4, and 8 years, respectively. A total of 104 patients (7.6%) died under observation, including 57 patients (54.8%) from cardiovascular causes. The crude rate of sudden death was 0.65% over the duration of the study. A total of 542 patients (39.4%) underwent AVR, including 388 patients (71.6%) with severe AS at study entry and 154 (28.4%) with moderate AS at entry who progressed to severe AS. Those with severe AS at entry who underwent AVR did so at a mean (SD) of 14.4 (16.6) months and a median of 8.7 months. The mean (SD) 2-year and 4-year AVR-free survival rates for asymptomatic patients with severe AS at baseline were 54% (2%) and 32% (3%), respectively. In those undergoing AVR, the 30-day postprocedural mortality was 0.9%. In patients with severe AS at entry, peak aortic jet velocity (greater than 5 m/s) and LVEF (less than 60%) were associated with all-cause and cardiovascular mortality without AVR; these factors were also associated with postprocedural mortality in those patients with severe AS at baseline who underwent AVR (surgical AVR in 310 patients; transcatheter AVR in 78 patients). Conclusions and Relevance: In patients with asymptomatic AS followed up in heart valve centers, the risk of sudden death is low, and rates of overall survival are similar to those reported from previous series. Patients with severe AS at baseline and peak aortic jet velocity of 5.0 m/s or greater or LVEF less than 60% have increased risks of all-cause and cardiovascular mortality even after AVR. The potential benefit of early intervention should be considered in these high-risk patients
Genetic and In Vitro Inhibition of PCSK9 and Calcific Aortic Valve Stenosis
The authors investigated whether PCSK9 inhibition could represent a therapeutic strategy in calcific aortic valve stenosis (CAVS). A meta-analysis of 10 studies was performed to determine the impact of the PCSK9 R46L variant on CAVS, and the authors found that CAVS was less prevalent in carriers of this variant (odds ratio: 0.80 [95% confidence interval: 0.70 to 0.91]; p = 0.0011) compared with noncarriers. PCSK9 expression was higher in the aortic valves of patients CAVS compared with control patients. In human valve interstitials cells submitted to a pro-osteogenic medium, PCSK9 levels increased and a PCSK9 neutralizing antibody significantly reduced calcium accumulation
Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis
P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein–Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (−) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection
The Role of Imaging in Measuring Disease Progression and Assessing Novel Therapies in Aortic Stenosis
Aortic stenosis represents a growing health care burden in high-income countries. Currently, the only definitive treatment is surgical or transcatheter valve intervention at the end stages of disease. As the understanding of the underlying pathophysiology evolves, many promising therapies are being investigated. These seek to both slow disease progression in the valve and delay the transition from hypertrophy to heart failure in the myocardium, with the ultimate aim of avoiding the need for valve replacement in the elderly patients afflicted by this condition. Noninvasive imaging has played a pivotal role in enhancing our understanding of the complex pathophysiology underlying aortic stenosis, as well as disease progression in both the valve and myocardium. In this review, the authors discuss the means by which contemporary imaging may be used to assess disease progression and how these approaches may be utilized, both in clinical practice and research trials exploring the clinical efficacy of novel therapies
- …