2,634 research outputs found

    Binary mixture of hard disks as a model glass former: Caging and uncaging

    Full text link
    I have proposed a measure for the cage effect in glass forming systems. A binary mixture of hard disks is numerically studied as a model glass former. A network is constructed on the basis of the colliding pairs of disks. A rigidity matrix is formed from the isostatic (rigid) sub--network, corresponding to a cage. The determinant of the matrix changes its sign when an uncaging event occurs. Time evolution of the number of the uncaging events is determined numerically. I have found that there is a gap in the uncaging timescales between the cages involving different numbers of disks. Caging of one disk by two neighboring disks sustains for a longer time as compared with other cages involving more than one disk. This gap causes two--step relaxation of this system

    Probing Majorana neutrinos in rare K and D, D_s, B, B_c meson decays

    Full text link
    We study lepton number violating decays of charged K, D, D_s, B and B_c mesons of the form M^+\to {M'}^-\ell^+\ell^+, induced by the existence of Majorana neutrinos. These processes provide information complementary to neutrinoless double nuclear beta decays, and are sensitive to neutrino masses and lepton mixing. We explore neutrino mass ranges m_N from below 1 eV to several hundred GeV. We find that in many cases the branching ratios are prohibitively small, however in the intermediate range m_\pi < m_N < m_{B_c}, in specific channels and for specific neutrino masses, the branching ratios can be at the reach of high luminosity experiments like those at the LHC-b and future Super flavor-factories, and can provide bounds on the lepton mixing parameters.Comment: 25 page

    Nonlinear optical conductivity of two-dimensional semiconductors with Rashba spin-orbit coupling in terahertz regime

    Get PDF
    We reveal that two-dimensional semiconductors with Rashba spin-orbit interaction (R2DG) exhibit exceptionally strong nonlinear optical response (NOR) in the terahertz frequency regime. The spin-split of the parabolic energy band in R2DG allows strong multiple-photon process to occur via inter-subband mechanism. We show sharp multiple photon edges in the nonlinear conductivity. The edges correspond to the cut-off effect produced by the multiple-photon process. For Rashba coupling parameter of λ R ≈ 10−10 eV m, electric field strength in the order of only 102 V/cm is required for the NOR to dominate over the linear response. Furthermore, the roles of the parabolic ‘free electron’ term H 0 and the linear Rashba term H R on NOR of R2DG are also investigated. Although the NOR is made possible due to the presence of a finite H R , H 0 does play an important role on the NOR especially in high temperature regime. H 0 has rendered R2DG a strong optical nonlinearity at elevated temperature which is not found in a purely linear system such as graphene. The results suggest the possibilities of Rashba spintronic system in the application of nonlinear terahertz devices

    Comments on Baryon Melting in Quark Gluon Plasma with Gluon Condensation

    Full text link
    We consider a black hole solution with a non-trivial dilaton from IIB super gravity which is expected to describe a strongly coupled hot gauge plasma with non-vanishing gluon condensation present. We construct a rotating and moving baryon to probe the screening and phases of the plasma. Melting of the baryons in hot plasma in this background had been studied previously, however, we show that baryons melt much lower temperature than has been suggested previously.Comment: 3 figures, 12 page
    • …
    corecore