7,835 research outputs found
Discrete Spacetime and Relativistic Quantum Particles
We study a single quantum particle in discrete spacetime evolving in a causal
way. We see that in the continuum limit any massless particle with a two
dimensional internal degree of freedom obeys the Weyl equation, provided that
we perform a simple relabeling of the coordinate axes or demand rotational
symmetry in the continuum limit. It is surprising that this occurs regardless
of the specific details of the evolution: it would be natural to assume that
discrete evolutions giving rise to relativistic dynamics in the continuum limit
would be very special cases. We also see that the same is not true for
particles with larger internal degrees of freedom, by looking at an example
with a three dimensional internal degree of freedom that is not relativistic in
the continuum limit. In the process we give a formula for the Hamiltonian
arising from the continuum limit of massless and massive particles in discrete
spacetime.Comment: 6 page
Causal Fermions in Discrete Spacetime
In this paper, we consider fermionic systems in discrete spacetime evolving
with a strict notion of causality, meaning they evolve unitarily and with a
bounded propagation speed. First, we show that the evolution of these systems
has a natural decomposition into a product of local unitaries, which also holds
if we include bosons. Next, we show that causal evolution of fermions in
discrete spacetime can also be viewed as the causal evolution of a lattice of
qubits, meaning these systems can be viewed as quantum cellular automata.
Following this, we discuss some examples of causal fermionic models in discrete
spacetime that become interesting physical systems in the continuum limit:
Dirac fermions in one and three spatial dimensions, Dirac fields and briefly
the Thirring model. Finally, we show that the dynamics of causal fermions in
discrete spacetime can be efficiently simulated on a quantum computer.Comment: 16 pages, 1 figur
Combining Semi-Analytic Models of Galaxy Formation with Simulations of Galaxy Clusters: the Need for AGN Heating
We present hydrodynamical N-body simulations of clusters of galaxies with
feedback taken from semi-analytic models of galaxy formation. The advantage of
this technique is that the source of feedback in our simulations is a
population of galaxies that closely resembles that found in the real universe.
We demonstrate that, to achieve the high entropy levels found in clusters,
active galactic nuclei must inject a large fraction of their energy into the
intergalactic/intracluster media throughout the growth period of the central
black hole. These simulations reinforce the argument of Bower et al. (2008),
who arrived at the same conclusion on the basis of purely semi-analytic
reasoning.Comment: 4 pages, 1 figure. To appear in the proceedings of "The Monster's
Fiery Breath", Eds. Sebastian Heinz and Eric Wilcots (AIP conference series
Some measurements of the dynamic and static stability of two blunt-nosed, low-fineness- ratio bodies of revolution in free flight at mequal4
Dynamic and static stability of two blunt nosed low fineness ratio bodies of revolution in free flight - ballistic
Quantum equilibration in finite time
It has recently been shown that small quantum subsystems generically
equilibrate, in the sense that they spend most of the time close to a fixed
equilibrium state. This relies on just two assumptions: that the state is
spread over many different energies, and that the Hamiltonian has
non-degenerate energy gaps. Given the same assumptions, it has also been shown
that closed systems equilibrate with respect to realistic measurements. We
extend these results in two important ways. First, we prove equilibration over
a finite (rather than infinite) time-interval, allowing us to bound the
equilibration time. Second, we weaken the non degenerate energy gaps condition,
showing that equilibration occurs provided that no energy gap is hugely
degenerate.Comment: 7 page
Sea surface and remotely sensed temperatures off Cape Mendocino, California
During September 3 to 5, 1979, a multisensor oceanographic experiment was conducted off Cape Mendocino, California. The purpose of this experiment was to validate the use of remote sensing techniques over an area along the U.S. west coast where coasted upwelling is known to be intense. Remotely sensed mutlispectral data, including thermal infrared imagery, were collected above an upwelling feature off Cape Mendocino. Data were acquired from the TIRNOS-N and NOAA-6 polar orbiting satellites, the NASA Ames Research Center's high altitude U-2 aircraft, and a U.S. Coast Guard C-130 aircraft. Supporting surface truth data over the same feature were collected aboard the National Oceanic and Atmospheric Administration (NOAA) ship, OCEANOGRAPHER. Atmospheric soundings were also taken aboard the ship. The results indicate that shipboard measurements of sea surface temperatures can be reproduction within 1 C or better through remote observation of absolute infrared radiance values (whether measured aboard the NOAA polar orbiting satellite, the U-2 aircraft, or the Coast Guard aircraft) by using appropriate atmospheric corrections. Also, the patterns of sea surface temperature which were derived independently from the various remote platforms provide a consistent interpretation of the surface temperature field
Evaluation of zirconia, thoria and zirconium diboride for advanced resistojet use
A literature survey was conducted to collect material properties data on all advanced high temperature materials. Three of these, Y2O3-stabilized ZrO2, ThO2, and ZrB2 with additives of C and SiC were selected for further study. Stabilized ZrO2 and ThO2 were found to have higher temperature oxidation resistance than any metal and great potential for use in advanced biowaste resistojets. ZrO2 has a lower electrical resistivity and sublimation and a higher creep endurance strength. ZrO2 and ThO2 tubular heat exchangers, electrically heated indirectly, were evaluated in short tests to about 1900 K in flowing CO2. ZrO2 was subjected to N2, H2, H2O and vacuum as well. X-ray diffraction and fluorescence analyses were made. The metal-to-ceramic seal technology for ZrO2 and ThO2 was developed using chemical vapor deposition of tantalum for metallizing and 82 Au - 18 Ni filler braze
FREE-FLIGHT MEASUREMENTS OF STATIC AND DYNAMIC STABILITY OF MODELS OF THE PROJECT MERCURY RE-ENTRY CAPSULE AT MACH NUMBERS 3 AND 9.5
Static & dynamic stability of mercury reentry capsule scale models at mach 3 & 9.
Equilibration of quantum systems and subsystems
We unify two recent results concerning equilibration in quantum theory. We
first generalise a proof of Reimann [PRL 101,190403 (2008)], that the
expectation value of 'realistic' quantum observables will equilibrate under
very general conditions, and discuss its implications for the equilibration of
quantum systems. We then use this to re-derive an independent result of Linden
et. al. [PRE 79, 061103 (2009)], showing that small subsystems generically
evolve to an approximately static equilibrium state. Finally, we consider
subspaces in which all initial states effectively equilibrate to the same
state.Comment: 5 page
Reconciling pastoral agriculture and nature conservation: developing a co-management approach in the English uplands
The article assesses the influence of the Common Agricultural Policy (CAP) on the pastoral farming systems in a National Park within the south west of England and more recent attempts to use innovative and participatory techniques to reconcile pastoral farming systems with wildlife management. The paper confirms evidence that the economic sustainability of farm businesses in the UK involved in pastoral farming is reducing, and that wildlife-orientated schemes are changing traditional farming systems in a way that might not be in the long-term interest of wildlife. The data gathered raise questions about the cost-effectiveness of the current environmental approaches, which are government-run with centrally determined prescriptions relating to the natural resource and wildlife. Drawing on the concept of co-management, an alternative approach is identified and explored with both farmers and nature conservation regulators. This approach places more emphasis upon adjusting the traditional farming system of this marginal type of farming to align with the sustainable management of a fragile ecosystem
- …