9,715 research outputs found
Gradients and anisotropies of high energy cosmic rays in the outer heliosphere
Two cosmic rays which pass through the same point going in opposite directions will, in the absence of scattering and inhomogeneities in the magnetic field, trace helices about adjacent flux tubes, whose centerlines are separated by one gyrodiameter. A directional anisotropy at the point suggests a difference in the number of cosmic rays loading the two flux tubes; that is, a density gradient over the baseline of a gyrodiameter. Previous studies at lower energies have shown that the cosmic ray density gradients vary in time and space. It is suggested that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. Anisotropic measurements made by Cerenkov detectors on Pioneers 10 and 11 were studied. It was found that local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU
Gradients and anisotropies of high energy cosmic rays in the outer heliosphere
Previous studies at lower energies have shown that the cosmic ray density gradients vary in space and time, and many authors currently are suggesting that the radial gradient associated with solar cycle modulation is supported largely by narrow barriers which encircle the Sun and propagate outward with the solar wind. If so, the anisotropy is a desirable way to detect spatial gradients, because it can be associated with the local solar wind and magnetic field conditions. With this in mind, the anisotropy measurements made by the UCSD Cerenkov detectors on Pioneers 10 and 11 are studied. It is shown that the local anisotropy varies greatly, but that the long term average is consistent with the global radial gradient measured between two spacecraft over a baseline of many AU
The Size Distribution of Kuiper Belt Objects
We describe analytical and numerical collisional evolution calculations for
the size distribution of icy bodies in the Kuiper Belt. For a wide range of
bulk properties, initial masses, and orbital parameters, our results yield
power-law cumulative size distributions, N_C propto r^{-q}, with q_L = 3.5 for
large bodies with radii of 10-100 km, and q_s = 2.5-3 for small bodies with
radii lesss than 0.1-1 km. The transition between the two power laws occurs at
a break radius of 1-30 km. The break radius is more sensitive to the initial
mass in the Kuiper Belt and the amount of stirring by Neptune than the bulk
properties of individual Kuiper Belt objects (KBOs). Comparisons with
observations indicate that most models can explain the observed sky surface
density of KBOs for red magnitudes, R = 22-27. For R 28, the model
surface density is sensitive to the amount of stirring by Neptune, suggesting
that the size distribution of icy planets in the outer solar system provides
independent constraints on the formation of Neptune.Comment: 24 pages of text, 12 figures; to appear in the Astronomical Journal,
October 200
The Evolution of Diffuse Radio Sources in Galaxy Clusters
We investigate the evolution and number distribution of radio halos in galaxy
clusters. Without re-acceleration or regeneration, the relativistic electrons
responsible for the diffuse radio emission will lose their energy via
inverse-Compton and synchrotron losses in a rather short time, and radio halos
will have lifetimes 0.1 Gyr. Radio halos could last for Gyr if a
significant level of re-acceleration is involved. The lifetimes of radio halos
would be comparable with the cosmological time if the radio-emitting electrons
are mainly the secondary electrons generated by pion decay following
proton-proton collisions between cosmic-ray protons and the thermal
intra-cluster medium within the galaxy clusters. Adopting both observational
and theoretical constraints for the formation of radio halos, we calculate the
formation rates and the comoving number density of radio halos in the
hierarchical clustering scheme. Comparing with observations, we find that the
lifetimes of radio halos are Gyr. Our results indicate that a
significant level of re-acceleration is necessary for the observed radio halos
and the secondary electrons may not be a dominant origin for radio halos.Comment: 22 pages, 6 figures, ApJ, in press (v2:Corrected typos.
Combination of paclitaxel and carboplatin in advanced non-small cell lung cancer (NSCLC)
Session - Respiratory & Critical Care Medicine: no. G-RC-13published_or_final_versio
Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro
INTRODUCTION: Se-methylselenocysteine (MSC), a naturally occurring selenium compound, is a promising chemopreventive agent against in vivo and in vitro models of carcinogen-induced mouse and rat mammary tumorigenesis. We have demonstrated previously that MSC induces apoptosis after a cell growth arrest in S phase in a mouse mammary epithelial tumor cell model (TM6 cells) in vitro. The present study was designed to examine the involvement of the phosphatidylinositol 3-kinase (PI3-K) pathway in TM6 tumor model in vitro after treatment with MSC. METHODS: Synchronized TM6 cells treated with MSC and collected at different time points were examined for PI3-K activity and Akt phosphorylation along with phosphorylations of Raf, MAP kinase/ERK kinase (MEK), extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). The growth inhibition was determined with a [(3)H]thymidine incorporation assay. Immunoblotting and a kinase assay were used to examine the molecules of the survival pathway. RESULTS: PI3-K activity was inhibited by MSC followed by dephosphorylation of Akt. The phosphorylation of p38 MAPK was also downregulated after these cells were treated with MSC. In parallel experiments MSC inhibited the Raf–MEK–ERK signaling pathway. CONCLUSION: These studies suggest that MSC blocks multiple signaling pathways in mouse mammary tumor cells. MSC inhibits cell growth by inhibiting the activity of PI3-K and its downstream effector molecules in mouse mammary tumor cells in vitro
Pharmacy Students’ Performance and Perceptions in a Flipped Teaching Pilot on Cardiac Arrhythmias
Objective. To implement the flipped teaching method in a 3-class pilot on cardiac arrhythmias and to assess the impact of the intervention on academic performance and student perceptions.
Design. An intervention group of 101 first-year pharmacy students, who took the class with the flipped teaching method, were supplied with prerecorded lectures prior to their 3 classes (1 class in each of the following subjects: basic sciences, pharmacology, and therapeutics) on cardiac arrhythmias. Class time was focused on active-learning and case-based exercises. Students then took a final examination that included questions on cardiac arrhythmias. The examination scores of the intervention group were compared to scores of the Spring 2011 control group of 105 first-year students who took the class with traditional teaching methods. An online survey was conducted to assess student feedback from the intervention group.
Assessment. The mean examination scores of the intervention group were significantly higher than the mean examination scores of the control group for the cardiac arrhythmia classes in pharmacology (with 89.6 6 2.0% vs 56.8 6 2.2%, respectively) and therapeutics (89.2 6 1.4% vs 73.7 6 2.1%, respectively). The survey indicated higher student satisfaction for flipped classes with highly rated learning objectives, recordings, and in-class activities.
Conclusion. Use of the flipped teaching method in a 3-class pilot on cardiac arrhythmias improved examination scores for 2 of the 3 classes (pharmacology and therapeutics). Student satisfaction was influenced by the quality of the learning objectives, prerecorded lectures, and inclass active-learning activities
A Combined Experimental and Theoretical Study into the Performance of Multilayer Vanadium Dioxide Nanocomposites for Energy Saving Applications
In the built environment there is a increasing issue of heat management, with buildings expending significant energy resources to maintain comfortable living temperatures. In many parts of the world, this entails the use of both heating and cooling during daylight hours depending on ambient temperatures. Due to the variation in the desired temperature control classical solutions can become counter productive in their aim of maintaining comfortable temperatures, therefore it is important to employ adaptive solutions that vary their functionality based on circumstance. In recent years vanadium dioxide (VO2) has generated a broad range of interest due to its heat-mediated structural phase transition from a semiconductor to a metal, which occurs at a critical temperature that may be tuned via doping. The phase transition of VO2 significantly modulates its optical properties, with the high temperature metallic state absorbing and reflecting considerably more infrared radiation than the lower temperature monoclinic state due to the presence of free electrons; a window coated with a VO2 film may passively vary its transmission of infrared radiation based on the ambient temperature, in doing so reducing the temperature management energy-load. Here, we present a theoretically optimised design for a thermochromic smart window film based on a multilayer stack of silica, titania and vanadium dioxide (VO2) on a glass substrate and use the simulations to guide the fabrication process. The design makes use of coherent interference within the multi-layered structure to suppress reflection of visible light and improve the reflective component of solar modulation. In doing so, we are able simultaneously improve the visible transmission and solar modulation of the film above what would be possible with a single layer film. Additionally, the use of thin film VO2 also acts to reduce the detrimental transition hysteresis typically seen in small domain sized nanoparticulate VO2 films. The multilayer structure is fabricated via spin coating of sol-gel based precursors and subsequent annealing. After which the structure is optically characterised and results are compared with simulation along with standard single layer VO2 films and other nanoparticulate based VO2 films
Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders.
BACKGROUND: The Bladder cooling reflex (BCR) i.e. uninhibited detrusor contractions evoked by intravesical instillation of cold saline, is a segmental reflex believed to be triggered by menthol sensitive cold receptors in the bladder wall, with the afferent signals transmitted by C fibres. The BCR is a neonatal reflex that becomes suppressed by descending signals from higher centres at approximately the time when the child gains full voluntary control of voiding. It re-emerges in adults with neurogenic detrusor overactivity as a consequence of loss of central descending inhibition, resulting from conditions such as spinal cord injury or multiple sclerosis. We have recently shown an increase of nerve fibres expressing the cool and menthol receptor TRPM8 in both overactive (IDO) and painful bladder syndrome (PBS), but its functional significance is unknown. We have therefore studied the bladder cooling reflex and associated sensory symptoms in patients with PBS and overactivity disorders. METHODS: The BCR, elicited by ice water test (IWT) was performed in patients with painful bladder syndrome (PBS, n = 17), idiopathic detrusor overactivity (IDO, n = 22), neurogenic detrusor overactivity (NDO, n = 4) and stress urinary incontinence (as controls, n = 21). The IWT was performed by intravesical instillation of cold saline (0 - 4 degrees C). A positive IWT was defined as presence of uninhibited detrusor contraction evoked by cold saline, associated with urgency or with fluid expulsion. Patients were asked to report and rate any pain and cold sensation during the test. RESULTS: A positive IWT was observed in IDO (6/22, 27.3%) and NDO (4/4, 100%) patients, but was negative in all control and PBS patients. Thirteen (76.5%) PBS patients reported pain during the IWT, with significantly higher pain scores during ice water instillation compared to the baseline (P = 0.0002), or equivalent amount of bladder filling (100 mls) with saline at room temperature (P = 0.015). None of the control or overactive (NDO/IDO) patients reported any pain during the IWT. CONCLUSION: The BCR in DO may reflect loss of central inhibition, which appears necessary to elicit this reflex; the pain elicited in PBS suggests afferent sensitisation, hence sensory symptoms are evoked but not reflex detrusor contractions. The ice water test may be a useful and simple marker for clinical trials in PBS, particularly for novel selective TRPM8 antagonists
- …