1,800 research outputs found
Most Complex Regular Right-Ideal Languages
A right ideal is a language L over an alphabet A that satisfies L = LA*. We
show that there exists a stream (sequence) (R_n : n \ge 3) of regular right
ideal languages, where R_n has n left quotients and is most complex under the
following measures of complexity: the state complexities of the left quotients,
the number of atoms (intersections of complemented and uncomplemented left
quotients), the state complexities of the atoms, the size of the syntactic
semigroup, the state complexities of the operations of reversal, star, and
product, and the state complexities of all binary boolean operations. In that
sense, this stream of right ideals is a universal witness.Comment: 19 pages, 4 figures, 1 tabl
Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages
A language over an alphabet is suffix-convex if, for any words
, whenever and are in , then so is .
Suffix-convex languages include three special cases: left-ideal, suffix-closed,
and suffix-free languages. We examine complexity properties of these three
special classes of suffix-convex regular languages. In particular, we study the
quotient/state complexity of boolean operations, product (concatenation), star,
and reversal on these languages, as well as the size of their syntactic
semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with
arXiv:1605.0669
Large Aperiodic Semigroups
The syntactic complexity of a regular language is the size of its syntactic
semigroup. This semigroup is isomorphic to the transition semigroup of the
minimal deterministic finite automaton accepting the language, that is, to the
semigroup generated by transformations induced by non-empty words on the set of
states of the automaton. In this paper we search for the largest syntactic
semigroup of a star-free language having left quotients; equivalently, we
look for the largest transition semigroup of an aperiodic finite automaton with
states.
We introduce two new aperiodic transition semigroups. The first is generated
by transformations that change only one state; we call such transformations and
resulting semigroups unitary. In particular, we study complete unitary
semigroups which have a special structure, and we show that each maximal
unitary semigroup is complete. For there exists a complete unitary
semigroup that is larger than any aperiodic semigroup known to date.
We then present even larger aperiodic semigroups, generated by
transformations that map a non-empty subset of states to a single state; we
call such transformations and semigroups semiconstant. In particular, we
examine semiconstant tree semigroups which have a structure based on full
binary trees. The semiconstant tree semigroups are at present the best
candidates for largest aperiodic semigroups.
We also prove that is an upper bound on the state complexity of
reversal of star-free languages, and resolve an open problem about a special
case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table
Symmetric Groups and Quotient Complexity of Boolean Operations
The quotient complexity of a regular language L is the number of left
quotients of L, which is the same as the state complexity of L. Suppose that L
and L' are binary regular languages with quotient complexities m and n, and
that the transition semigroups of the minimal deterministic automata accepting
L and L' are the symmetric groups S_m and S_n of degrees m and n, respectively.
Denote by o any binary boolean operation that is not a constant and not a
function of one argument only. For m,n >= 2 with (m,n) not in
{(2,2),(3,4),(4,3),(4,4)} we prove that the quotient complexity of LoL' is mn
if and only either (a) m is not equal to n or (b) m=n and the bases (ordered
pairs of generators) of S_m and S_n are not conjugate. For (m,n)\in
{(2,2),(3,4),(4,3),(4,4)} we give examples to show that this need not hold. In
proving these results we generalize the notion of uniform minimality to direct
products of automata. We also establish a non-trivial connection between
complexity of boolean operations and group theory
A New Technique for Reachability of States in Concatenation Automata
We present a new technique for demonstrating the reachability of states in
deterministic finite automata representing the concatenation of two languages.
Such demonstrations are a necessary step in establishing the state complexity
of the concatenation of two languages, and thus in establishing the state
complexity of concatenation as an operation. Typically, ad-hoc induction
arguments are used to show particular states are reachable in concatenation
automata. We prove some results that seem to capture the essence of many of
these induction arguments. Using these results, reachability proofs in
concatenation automata can often be done more simply and without using
induction directly.Comment: 23 pages, 1 table. Added missing affiliation/funding informatio
Most Complex Non-Returning Regular Languages
A regular language is non-returning if in the minimal deterministic
finite automaton accepting it there are no transitions into the initial state.
Eom, Han and Jir\'askov\'a derived upper bounds on the state complexity of
boolean operations and Kleene star, and proved that these bounds are tight
using two different binary witnesses. They derived upper bounds for
concatenation and reversal using three different ternary witnesses. These five
witnesses use a total of six different transformations. We show that for each
there exists a ternary witness of state complexity that meets the
bound for reversal and that at least three letters are needed to meet this
bound. Moreover, the restrictions of this witness to binary alphabets meet the
bounds for product, star, and boolean operations. We also derive tight upper
bounds on the state complexity of binary operations that take arguments with
different alphabets. We prove that the maximal syntactic semigroup of a
non-returning language has elements and requires at least
generators. We find the maximal state complexities of atoms of
non-returning languages. Finally, we show that there exists a most complex
non-returning language that meets the bounds for all these complexity measures.Comment: 22 pages, 6 figure
Syntactic Complexity of R- and J-Trivial Regular Languages
The syntactic complexity of a regular language is the cardinality of its
syntactic semigroup. The syntactic complexity of a subclass of the class of
regular languages is the maximal syntactic complexity of languages in that
class, taken as a function of the state complexity n of these languages. We
study the syntactic complexity of R- and J-trivial regular languages, and prove
that n! and floor of [e(n-1)!] are tight upper bounds for these languages,
respectively. We also prove that 2^{n-1} is the tight upper bound on the state
complexity of reversal of J-trivial regular languages.Comment: 17 pages, 5 figures, 1 tabl
Checking Whether an Automaton Is Monotonic Is NP-complete
An automaton is monotonic if its states can be arranged in a linear order
that is preserved by the action of every letter. We prove that the problem of
deciding whether a given automaton is monotonic is NP-complete. The same result
is obtained for oriented automata, whose states can be arranged in a cyclic
order. Moreover, both problems remain hard under the restriction to binary
input alphabets.Comment: 13 pages, 4 figures. CIAA 2015. The final publication is available at
http://link.springer.com/chapter/10.1007/978-3-319-22360-5_2
Understanding Effects of Feedback on Group Collaboration
http://www.aaai.org/Press/Reports/Symposia/Spring/ss-09-04.phpSmall group collaboration is vital for any type of organization
to function successfully. Feedback on group
dynamics has been proven to help with the performance
of collaboration. We use sociometric sensors to detect
group dynamics and use the data to give real-time feedback
to people. We are especially interested in the effect
of feedback on distributed collaboration. The goal is to
bridge the gap in distributed groups by detecting and
communicating social signals. We conducted an initial
experiment to test the effects of feedback on brainstorming
and problem solving tasks. The results show
that real-time feedback changes speaking time and interactivity
level of groups. Also in groups with one
or more dominant people, the feedback effectively reduced
the dynamical difference between co-located and
distributed collaboration as well as the behavioral difference
between dominant and non-dominant people.
Interestingly, feedback had a different effect depending
on the type of meeting and types of personality.
We intend to continue this direction of research by personalizing
the visualization by automatically detecting
type of meeting and personality. Moreover we propose
to demonstrate the correlation of group dynamics with
higher level characteristics such as performance, interest
and creativity
A Computational Interpretation of Context-Free Expressions
We phrase parsing with context-free expressions as a type inhabitation
problem where values are parse trees and types are context-free expressions. We
first show how containment among context-free and regular expressions can be
reduced to a reachability problem by using a canonical representation of
states. The proofs-as-programs principle yields a computational interpretation
of the reachability problem in terms of a coercion that transforms the parse
tree for a context-free expression into a parse tree for a regular expression.
It also yields a partial coercion from regular parse trees to context-free
ones. The partial coercion from the trivial language of all words to a
context-free expression corresponds to a predictive parser for the expression
- …
