868 research outputs found
Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences
Minireview. Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, Introns, Poly(A) tail formation sequences
Regulatory sequences involved in the translation of Neurospora crassa mRNA: Kozak sequences and stop codons
We have analyzed the sequences of 77 nuclear genes of N. crassa thought to be transcribed by RNA polymerase II (References 1-72) which should represent virtually all of the presently published nuclear gene sequences for this fungus
Second harmonic generating (SHG) nanoprobes for in vivo imaging
Fluorescence microscopy has profoundly changed cell and molecular biology studies by permitting tagged gene products to be followed as they function and interact. The ability of a fluorescent dye to absorb and emit light of different wavelengths allows it to generate startling contrast that, in the best cases, can permit single molecule detection and tracking. However, in many experimental settings, fluorescent probes fall short of their potential due to dye bleaching, dye signal saturation, and tissue autofluorescence. Here, we demonstrate that second harmonic generating (SHG) nanoprobes can be used for in vivo imaging, circumventing many of the limitations of classical fluorescence probes. Under intense illumination, such as at the focus of a laser-scanning microscope, these SHG nanocrystals convert two photons into one photon of half the wavelength; thus, when imaged by conventional two-photon microscopy, SHG nanoprobes appear to generate a signal with an inverse Stokes shift like a fluorescent dye, but with a narrower emission. Unlike commonly used fluorescent probes, SHG nanoprobes neither bleach nor blink, and the signal they generate does not saturate with increasing illumination intensity. The resulting contrast and detectability of SHG nanoprobes provide unique advantages for molecular imaging of living cells and tissues
Size dependent tunneling and optical spectroscopy of CdSe quantum rods
Photoluminescence excitation spectroscopy and scanning tunneling spectroscopy
are used to study the electronic states in CdSe quantum rods that manifest a
transition from a zero dimensional to a one dimensional quantum confined
structure. Both optical and tunneling spectra show that the level structure
depends primarily on the rod diameter and not on length. With increasing
diameter, the band-gap and the excited state level spacings shift to the red.
The level structure was assigned using a multi-band effective-mass model,
showing a similar dependence on rod dimensions.Comment: Accepted to PRL (nearly final version). 4 pages in revtex, 4 figure
Nanotechnology and molecular cytogenetics: the future has not yet arrived
Quantum dots (QDs) are a novel class of inorganic fluorochromes composed of nanometer-scale crystals made of a semiconductor material. They are resistant to photo-bleaching, have narrow excitation and emission wavelengths that can be controlled by particle size and thus have the potential for multiplexing experiments. Given the remarkable optical properties that quantum dots possess, they have been proposed as an ideal material for use in molecular cytogenetics, specifically the technique of fluorescent in situ hybridisation (FISH). In this review, we provide an account of the current QD-FISH literature, and speculate as to why QDs are not yet optimised for FISH in their current form
Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging
Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule-based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter-tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene
Vapor phase mediated cellular uptake of sub 5 nm nanoparticles
Nanoparticles became an important and wide-used tool for cell imaging because of their unique optical properties. Although the potential of nanoparticles (NPs) in biology is promising, a number of questions concerning the safety of nanomaterials and the risk/benefit ratio of their usage are open. Here, we have shown that nanoparticles produced from silicon carbide (NPs) dispersed in colloidal suspensions are able to penetrate into surrounding air environment during the natural evaporation of the colloids and label biological cells via vapor phase. Natural gradual size-tuning of NPs in dependence to the distance from the NP liquid source allows progressive shift of the fluorescence color of labeled cells in the blue region according to the increase of the distance from the NP suspension. This effect may be used for the soft vapor labeling of biological cells with the possibility of controlling the color of fluorescence. However, scientists dealing with the colloidal NPs have to seriously consider such a NP's natural transfer in order to protect their own health as well as to avoid any contamination of the control samples
Structure Formation, Melting, and the Optical Properties of Gold/DNA Nanocomposites: Effects of Relaxation Time
We present a model for structure formation, melting, and optical properties
of gold/DNA nanocomposites. These composites consist of a collection of gold
nanoparticles (of radius 50 nm or less) which are bound together by links made
up of DNA strands. In our structural model, the nanocomposite forms from a
series of Monte Carlo steps, each involving reaction-limited cluster-cluster
aggregation (RLCA) followed by dehybridization of the DNA links. These links
form with a probability which depends on temperature and particle
radius . The final structure depends on the number of monomers (i. e. gold
nanoparticles) , , and the relaxation time. At low temperature, the
model results in an RLCA cluster. But after a long enough relaxation time, the
nanocomposite reduces to a compact, non-fractal cluster. We calculate the
optical properties of the resulting aggregates using the Discrete Dipole
Approximation. Despite the restructuring, the melting transition (as seen in
the extinction coefficient at wavelength 520 nm) remains sharp, and the melting
temperature increases with increasing as found in our previous
percolation model. However, restructuring increases the corresponding link
fraction at melting to a value well above the percolation threshold. Our
calculated extinction cross section agrees qualitatively with experiments on
gold/DNA composites. It also shows a characteristic ``rebound effect,''
resulting from incomplete relaxation, which has also been seen in some
experiments. We discuss briefly how our results relate to a possible sol-gel
transition in these aggregates.Comment: 12 pages, 10 figure
PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation
Nanomaterials have been actively pursued for biological and medical
applications in recent years. Here, we report the synthesis of several new
poly(ethylene glycol) grafted branched-polymers for functionalization of
various nanomaterials including carbon nanotubes, gold nanoparticles (NP) and
gold nanorods (NRs), affording high aqueous solubility and stability for these
materials. We synthesize different surfactant polymers based upon
poly-(g-glutamic acid) (gPGA) and poly(maleic anhydride-alt-1-octadecene)
(PMHC18). We use the abundant free carboxylic acid groups of gPGA for attaching
lipophilic species such as pyrene or phospholipid, which bind to nanomaterials
via robust physisorption. Additionally, the remaining carboxylic acids on gPGA
or the amine-reactive anhydrides of PMHC18 are then PEGylated, providing
extended hydrophilic groups, affording polymeric amphiphiles. We show that
single-walled carbon nanotubes (SWNTs), Au NPs and NRs functionalized by the
polymers exhibit high stability in aqueous solutions at different pHs, at
elevated temperatures and in serum. Morever, the polymer-coated SWNTs exhibit
remarkably long blood circulation (t1/2 22.1 h) upon intravenous injection into
mice, far exceeding the previous record of 5.4 h. The ultra-long blood
circulation time suggests greatly delayed clearance of nanomaterials by the
reticuloendothelial system (RES) of mice, a highly desired property for in vivo
applications of nanomaterials, including imaging and drug delivery
- …