277 research outputs found

    Angular Momentum Partitioning and Hexacontatetrapole Moments in Impulsively Excited Argon Ions

    Get PDF
    We have studied polarized electron collisions with Ar in which the target is simultaneously ionized and excited to form Ar+(3p4(1D)4p) states. We measured the integrated Stokes parameters of the subsequent fluorescence emitted by the 2F7/2, 2F5/2, 2D5/2, and 2P3/2 states along the direction of electron polarization. The Rubin-Bederson hypothesis is shown to hold for the L and S multipoles of these states. The electric quadrupole and hexadecapole of the 1D core are derived. By recoupling these moments with the electric quadrupole moment of the 4p electron, we calculate higher moments of the total ionic orbital angular momentum, including its hexacontatetrapole (64-pole) moment

    Angular momentum partitioning and the subshell multipole moments in impulsively excited argon ions

    Get PDF
    We have investigated collisions between transversely polarized electrons and Ar, in which the Ar is simultaneously ionized and excited to the Ar+*[3p4(+D)4p] states. The Stokes parameters of the fluorescence emitted in the following transitions was measured: (+D)4s 2D/2−(1D)4p 2F7/2 (461.0 nm), (1D)4s 2D5/2 −(1D)4p 2F5/2 (463.7 nm), (1P)3d 2D5/2−(1D)4p 2D5/2 (448.2 nm), and (1D)4s 2D3/2−(1D)4p 2P3/2 (423.7 nm). We develop the angular momentum algebra necessary to extract from these data, starting from the overall atomic J multipoles, the partitioning of orbital angular momentum into the 1D core electric quadrupole and hexadecapole moments, and the outer 4p electric quadrupole moment. The magnetic dipole of the outer electron is also determined. This procedure requires the assumption of good LS coupling for these states, which is justified. We recouple these individual core- and outer-electron moments to calculate the initial electric quadrupoles, hexadecapoles, and hexacontatetrapoles of the initial excited-state manifold. The detailed time structure of the electron-atom collision is considered, as well as the time evolution of the excited ionic state. The Rubin-Bederson hypothesis is thus shown to hold for the initial ionic L and S terms. The consequences of the breakdown of LS coupling are considered. From the circular polarization data, estimates of the relative importance of direct and exchange excitation cross section are made. We discuss experimental issues related to background contributions, Hanle depolarization of the fluorescence signal, and cascade contributions. Nonlinearity of the equations relating the Stokes parameters to the subshell multipole moments complicates the data analysis. Details of the Monte Carlo terrain-search algorithm used to extract multipole data is discussed, and the implications of correlation between the various subshell multipole moments is analyzed. The physical significance of the higher-order multipole moments is discussed, and graphical representations of the effects of these multipoles on the excited ionic charge clouds is presented

    Optically Pumped Direct Extraction Electron Spin Filter System and Method of Use

    Get PDF
    Disclosed are a System, and method, for producing a directly extracted flow of preferred-spin-polarization-direction electrons. The present invention optically pumped electron Spin filter System provides a mixture of, typically alkali, atoms and electron polarization direction enhancing buffer gas, to a, preferably, Single chamber essentially enclosed Space, into which essentially enclosed space is entered a predominately single handedness, preferably laser System produced, beam of photons which optically pumps electrons in atoms to a dark-ground State with a preferred-spin-polarization, that is maintained in the presence of an imposed magnetic field, which magnetic field is oriented essentially co-linear with said beam of predominately single polarized photons. Con-currently electrons are, by practice of the method of the present invention, generated in the essentially enclosed space by a buffer gas mediated electric discharge, and are caused to be in a preferred-spin-polarization-direction via pumped dark-ground State atom-electron collision mediated exchange mechanism(s), prior to being directly extracted

    Age structure and disturbance legacy of North American forests

    Get PDF
    Most forests of the world are recovering from a past disturbance. It is well known that forest disturbances profoundly affect carbon stocks and fluxes in forest ecosystems, yet it has been a great challenge to assess disturbance impacts in estimates of forest carbon budgets. Net sequestration or loss of CO<sub>2</sub> by forests after disturbance follows a predictable pattern with forest recovery. Forest age, which is related to time since disturbance, is a useful surrogate variable for analyses of the impact of disturbance on forest carbon. In this study, we compiled the first continental forest age map of North America by combining forest inventory data, historical fire data, optical satellite data and the dataset from NASA's Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) project. A companion map of the standard deviations for age estimates was developed for quantifying uncertainty. We discuss the significance of the disturbance legacy from the past, as represented by current forest age structure in different regions of the US and Canada, by analyzing the causes of disturbances from land management and nature over centuries and at various scales. We also show how such information can be used with inventory data for analyzing carbon management opportunities. By combining geographic information about forest age with estimated C dynamics by forest type, it is possible to conduct a simple but powerful analysis of the net CO<sub>2</sub> uptake by forests, and the potential for increasing (or decreasing) this rate as a result of direct human intervention in the disturbance/age status. Finally, we describe how the forest age data can be used in large-scale carbon modeling, both for land-based biogeochemistry models and atmosphere-based inversion models, in order to improve the spatial accuracy of carbon cycle simulations

    The use of forest stand age information in an atmospheric CO2 inversion applied to North America

    Get PDF
    Atmospheric inversions have become an important tool in quantifying carbon dioxide (CO2) sinks and sources at a variety of spatiotemporal scales, but associated large uncertainties restrain the inversion research community from reaching agreement on many important subjects. We enhanced an atmospheric inversion of the CO2 flux for North America by introducing spatially explicit information on forest stand age for US and Canada as an additional constraint, since forest carbon dynamics are closely related to time since disturbance. To use stand age information in the inversion, we converted stand age into an age factor, and included the covariances between subcontinental regions in the inversion based on the similarity of the age factors. Our inversion results show that, considering age factors, regions with recently disturbed or old forests are often nudged towards carbon sources, while regions with middle-aged productive forests are shifted towards sinks. This conforms to stand age effects observed in flux networks. At the subcontinental level, our inverted carbon fluxes agree well with continuous estimates of net ecosystem carbon exchange (NEE) upscaled from eddy covariance flux data based on MODIS data. Inverted fluxes with the age constraint exhibit stronger correlation to these upscaled NEE estimates than those inverted without the age constraint. While the carbon flux at the continental and subcontinental scales is predominantly determined by atmospheric CO2 observations, the age constraint is shown to have potential to improve the inversion of the carbon flux distribution among subcontinental regions, especially for regions lacking atmospheric CO2 observation

    Dynamic regulation of canonical TGF beta signalling by endothelial transcription factor ERG protects from liver fibrogenesis

    Get PDF
    The role of the endothelium in protecting from chronic liver disease and TGFβ-mediated fibrosis remains unclear. Here we describe how the endothelial transcription factor ETS-related gene (ERG) promotes liver homoeostasis by controlling canonical TGFβ-SMAD signalling, driving the SMAD1 pathway while repressing SMAD3 activity. Molecular analysis shows that ERG binds to SMAD3, restricting its access to DNA. Ablation of ERG expression results in endothelial-to-mesenchymal transition (EndMT) and spontaneous liver fibrogenesis in EC-specific constitutive hemi-deficient (ErgcEC-Het) and inducible homozygous deficient mice (ErgiEC-KO), in a SMAD3-dependent manner. Acute administration of the TNF-α inhibitor etanercept inhibits carbon tetrachloride (CCL4)-induced fibrogenesis in an ERG-dependent manner in mice. Decreased ERG expression also correlates with EndMT in tissues from patients with end-stage liver fibrosis. These studies identify a pathogenic mechanism where loss of ERG causes endothelial-dependent liver fibrogenesis via regulation of SMAD2/3. Moreover, ERG represents a promising candidate biomarker for assessing EndMT in liver disease

    Relevance of methodological choices for accounting of land use change carbon fluxes

    Get PDF
    Accounting for carbon fluxes from land use and land cover change (LULCC) generally requires choosing from multiple options of how to attribute the fluxes to regions and to LULCC activities. Applying a newly developed and spatially explicit bookkeeping model BLUE (bookkeeping of land use emissions), we quantify LULCC fluxes and attribute them to land use activities and countries by a range of different accounting methods. We present results with respect to a Kyoto Protocol-like "commitment" accounting period, using land use emissions of 2008-2012 as an example scenario. We assess the effect of accounting methods that vary (1) the temporal evolution of carbon stocks, (2) the state of the carbon stocks at the beginning of the period, (3) the temporal attribution of carbon fluxes during the period, and (4) treatment of LULCC fluxes that occurred prior to the beginning of the period. We show that the methodological choices result in grossly different estimates of carbon fluxes for the different attribution definitions. ©2015. American Geophysical Union. All Rights Reserved

    A data support infrastructure for Clean Development Mechanism forestry implementation: an inventory perspective from Cameroon

    Get PDF
    Clean Development Mechanism (CDM) forestry project development requires highly multi-disciplinary and multiple-source information that can be complex, cumbersome and costly to acquire. Yet developing countries in which CDM projects are created and implemented are often data poor environments and unable to meet such complex information requirements. Using Cameroon as an example, the present paper explores the structure of an enabling host country data support infrastructure for CDM forestry implementation, and also assesses the supply potential of current forestry information. Results include a conceptual data model of CDM project data needs; the list of meso- and macro-level data and information requirements (Demand analysis); and an inventory of relevant data available in Cameroon (Supply analysis). From a comparison of demand and supply, we confirm that data availability and the relevant infrastructure for data or information generation is inadequate for supporting carbon forestry at the micro, meso and macro-levels in Cameroon. The results suggest that current CDM afforestation and reforestation information demands are almost impenetrable for local communities in host countries and pose a number of cross-scale barriers to project adoption. More importantly, we identify proactive regulatory, institutional and capacity building policy strategies for forest data management improvements that could enhance biosphere carbon management uptake in poor countries. CDM forestry information research needs are also highlighted
    • …
    corecore