1,861 research outputs found

    On Negotiation as Concurrency Primitive

    Full text link
    We introduce negotiations, a model of concurrency close to Petri nets, with multiparty negotiation as primitive. We study the problems of soundness of negotiations and of, given a negotiation with possibly many steps, computing a summary, i.e., an equivalent one-step negotiation. We provide a complete set of reduction rules for sound, acyclic, weakly deterministic negotiations and show that, for deterministic negotiations, the rules compute the summary in polynomial time

    On the pp-supports of a holonomic D\mathcal{D}-module

    Full text link
    For a smooth variety YY over a perfect field of positive characteristic, the sheaf DYD_Y of crystalline differential operators on YY (also called the sheaf of PDPD-differential operators) is known to be an Azumaya algebra over TY′∗,T^*_{Y'}, the cotangent space of the Frobenius twist Y′Y' of Y.Y. Thus to a sheaf of modules MM over DYD_Y one can assign a closed subvariety of TY′∗,T^*_{Y'}, called the pp-support, namely the support of MM seen as a sheaf on TY′∗.T^*_{Y'}. We study here the family of pp-supports assigned to the reductions modulo primes pp of a holonomic D\mathcal{D}-module. We prove that the Azumaya algebra of differential operators splits on the regular locus of the pp-support and that the pp-support is a Lagrangian subvariety of the cotangent space, for pp large enough. The latter was conjectured by Kontsevich. Our approach also provides a new proof of the involutivity of the singular support of a holonomic D\mathcal{D}-module, by reduction modulo p.p.Comment: The article has been rewritten with much improved exposition as well as some additional results, e.g. Corollary 6.3.1. This is the final version, accepted for publication in Inventiones Mathematica

    The derivation of performance expressions for communication protocols from timed Petri net models

    Get PDF
    Petri Net models have been extended in a variety of ways and have been used to prove the correctness and evaluate the performance of communication protocols. Several extensions have been proposed to model time. This work uses a form of Timed Petri Nets and presents a technique for symbolically deriving expressions which describe system performance. Unlike past work on performance evaluation of Petri Nets which assumes a priori knowledge of specific time delays, the technique presented here applies to a wide range of time delays so long as the delays satisfy a set of timing constraints. The technique is demonstrated using a simple communication protocol

    Surface specific peptide immobilization on radiografted polymers as potential screening assays for antiangiogenic immunotherapy

    Get PDF
    International audienceAngiogenesis is a key process of cancer development and metastasis. It's inhibition is an important and promising strategy to block tumor growth and invasion. One of these approaches, based on antiangiogenic immunotherapy, is the recognition of a specific region of an angiogenic growth factor, called VEGF-A, by monoclonal antibodies. Thus, we aimed to design a novel assay to screen potential monoclonal antibodies directed against VEGF-A. In a first approach, we chose to perform covalent coupling of angiogenesis active cyclopeptides onto biocompatible thermoplastic transparent PVDF films and to fully characterize the chemical structure, the surface state and the biochemical properties of the synthesized devices. Electron beam radiation created radical sites on PVDF films without adding any toxic chemicals. These primary radicals and some induced peroxides were used as initiators for acrylic acid polymerization. Under our experimental conditions, surface grafting was favoured. Functionalization of PVDF-g-PAA films with peptides via a spacer arm was possible by performing two subsequent coupling reactions. EDC was used as coupling agent. Spacer arm saturation of the film surface was achieved for 25 mol% yield meaning that one spacer arm on four carboxylic acids were covalently bound. Peptide immobilization resulted in binding 10 times less leading to a final 3 mol% yield. Binding densities are governed by their individual space requirements. Each chemical step has been followed by FTIR in ATR mode, NMR using HR MAS technique and XPS. From XPS results, a layer of peptide covered PVDF-g-PAA film surface. The amounts of covalently immobilized peptide were determined using indirect UV spectroscopy on supernatant reaction solution. Yields were correlated with high resolution NMR results. The peptide/antibody recognition validated our system showing the conservation of peptide tridimensional structure with a positive response to specific antibodies. Because of the covalent protein linkage to PVDF films, a simple cleaning with immunoaffinity chromatography buffer allows the films to be reused
    • …
    corecore