347 research outputs found

    Absolute rigidity spectrum of protons and helium nuclei above 10 GV/c

    Get PDF
    Proton and helium nuclei differential spectra were gathered with a balloon borne magnet spectrometer. The data were fitted to the assumption that the differential flux can be represented by a power law in rigidity. In the rigidity range 10 to 25 GV/c the spectral indices were found to be -(2.74 plus or minus 0.04) for protons and -(2.71 plus or minus 0.05) for helium nuclei. A brief discussion is given by systematic errors

    Observation of cosmic ray positrons from 5 to 25 GeV

    Get PDF
    The positron data gathered in conjunction with electron data published elsewhere is reported. The basic recognition scheme was to look for low mass positive particles that cause a cascade in a 7 radiation length shower counter. The mass criteria is imposed by selecting particles that were accompanied by Cherenkov light but whose rigidity was below the proton Cherenkov threshold. Thus the proton Cherenkov threshold represents an upper limit to the range of the experiment

    Galactic secondary positron flux at the Earth

    Get PDF
    Secondary positrons are produced by spallation of cosmic rays within the interstellar gas. Measurements have been typically expressed in terms of the positron fraction, which exhibits an increase above 10 GeV. Many scenarios have been proposed to explain this feature, among them some additional primary positrons originating from dark matter annihilation in the Galaxy. The PAMELA satellite has provided high quality data that has enabled high accuracy statistical analyses to be made, showing that the increase in the positron fraction extends up to about 100 GeV. It is therefore of paramount importance to constrain theoretically the expected secondary positron flux to interpret the observations in an accurate way. We find the secondary positron flux to be reproduced well by the available observations, and to have theoretical uncertainties that we quantify to be as large as about one order of magnitude. We also discuss the positron fraction issue and find that our predictions may be consistent with the data taken before PAMELA. For PAMELA data, we find that an excess is probably present after considering uncertainties in the positron flux, although its amplitude depends strongly on the assumptions made in relation to the electron flux. By fitting the current electron data, we show that when considering a soft electron spectrum, the amplitude of the excess might be far lower than usually claimed. We provide fresh insights that may help to explain the positron data with or without new physical model ingredients. PAMELA observations and the forthcoming AMS-02 mission will allow stronger constraints to be aplaced on the cosmic--ray transport parameters, and are likely to reduce drastically the theoretical uncertainties.Comment: 15 pages, 12 figures. The recent PAMELA data on the positron fraction (arXiv:0810.4995) have been included and the ensuing discussion has been extended. Accepted version in A&

    The Absolute Spectra of Galactic Cosmic Rays at Solar Minimum and Their Implications for Manned Spaceflight

    Get PDF
    The radiation dose from galactic cosmic rays during a proposed mission to Mars is near the annual dose limit for the crew. Since the absolute spectra of galactic cosmic rays critically influences mission planning and spacecraft design, these spectra must be determined as accurately as possible. We have fit published measurements with solutions of the spherically symmetric diffusion equation to make accurate representations of the spectra. We report preliminary determinations on the absolute differential energy spectra at 1 AU and discuss the implications for the proposed missions to Mars

    Randomized trial of conventional transseptal needle versus radiofrequency energy needle puncture for left atrial access (the TRAVERSE-LA study).

    Get PDF
    BackgroundTransseptal puncture is a critical step in achieving left atrial (LA) access for a variety of cardiac procedures. Although the mechanical Brockenbrough needle has historically been used for this procedure, a needle employing radiofrequency (RF) energy has more recently been approved for clinical use. We sought to investigate the comparative effectiveness of an RF versus conventional needle for transseptal LA access.Methods and resultsIn this prospective, single-blinded, controlled trial, 72 patients were randomized in a 1:1 fashion to an RF versus conventional (BRK-1) transseptal needle. In an intention-to-treat analysis, the primary outcome was time required for transseptal LA access. Secondary outcomes included failure of the assigned needle, visible plastic dilator shavings from needle introduction, and any procedural complication. The median transseptal puncture time was 68% shorter using the RF needle compared with the conventional needle (2.3 minutes [interquartile range {IQR}, 1.7 to 3.8 minutes] versus 7.3 minutes [IQR, 2.7 to 14.1 minutes], P = 0.005). Failure to achieve transseptal LA access with the assigned needle was less common using the RF versus conventional needle (0/36 [0%] versus 10/36 [27.8%], P < 0.001). Plastic shavings were grossly visible after needle advancement through the dilator and sheath in 0 (0%) RF needle cases and 12 (33.3%) conventional needle cases (P < 0.001). There were no differences in procedural complications (1/36 [2.8%] versus 1/36 [2.8%]).ConclusionsUse of an RF needle resulted in shorter time to transseptal LA access, less failure in achieving transseptal LA access, and fewer visible plastic shavings

    Sex Differences in the Utilization and Outcomes of Surgical Aortic Valve Replacement for Severe Aortic Stenosis

    Get PDF
    Background Studies assessing the differential impact of sex on outcomes of aortic valve replacement (AVR) yielded conflicting results. We sought to investigate sex‐related differences in AVR utilization, patient risk profile, and in‐hospital outcomes using the Nationwide Inpatient Sample. Methods and Results In total, 166 809 patients (63% male and 37% female) who underwent AVR between 2003 and 2014 were identified, and 48.5% had a concomitant cardiac surgery procedure. Compared with men, women were older and had more nonatherosclerotic comorbid conditions including hypertension, diabetes mellitus, obstructive pulmonary disease, atrial fibrillation/flutter, and anemia but fewer incidences of coronary and peripheral arterial disease and prior sternotomies. In‐hospital mortality was significantly higher in women (5.6% versus 4%, P\u3c0.001). Propensity matching was performed to assess the impact of sex on the outcomes of isolated AVR and yielded 28 237 matched pairs of male and female participants. In the propensity‐matched groups, in‐hospital mortality was higher in women (3.3% versus 2.9%, P\u3c0.001). Along with vascular complications and blood transfusion (6% versus 5.6%, P=0.027 and 40.4% versus 33.9%, P\u3c0.001, respectively). Rates of stroke, permanent pacemaker implantation, and acute kidney injury requiring dialysis were similar (2.4% versus 2.4%, P=0.99; 6% versus 6.3%, P=0.15; and 1.4% versus 1.3%, P=0.14, respectively). Length of stay median and interquartile range were both similar between groups (7±6 days). Rates of nonhome discharge were higher among women (27.9% versus 19.6%, P\u3c0.001). Conclusions Women have worse in‐hospital mortality following AVR compared with men. Coupled with the accumulating evidence suggesting higher magnitude of benefit of transcatheter AVR over AVRin women, women should perhaps be offered transcatheter AVR over AVR at a lower threshold than men

    Spaceflight Radiation Health program at the Lyndon B. Johnson Space Center

    Get PDF
    The Johnson Space Center leads the research and development activities that address the health effects of space radiation exposure to astronaut crews. Increased knowledge of the composition of the environment and of the biological effects of space radiation is required to assess health risks to astronaut crews. The activities at the Johnson Space Center range from quantification of astronaut exposures to fundamental research into the biological effects resulting from exposure to high energy particle radiation. The Spaceflight Radiation Health Program seeks to balance the requirements for operational flexibility with the requirement to minimize crew radiation exposures. The components of the space radiation environment are characterized. Current and future radiation monitoring instrumentation is described. Radiation health risk activities are described for current Shuttle operations and for research development program activities to shape future analysis of health risk

    Gamma-Ray Telescopes (in "400 Years of Astronomical Telescopes")

    Full text link
    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of aluminum-26.Comment: 11 pages, 6 figures/ in "400 Years of Astronomical Telescopes: A Review of History, Science and Technology", ed. B.R. Brandl, R. Stuik, & J.K. Katgert-Merkeli (Exp. Astron. 26, 111-122 [2009]
    corecore