33 research outputs found

    Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts

    Get PDF
    Aims: Fibroblast growth factor 21 (FGF21) is a hepatic metabolic regulator with pleotropic actions. Its plasma concentrations are increased in obesity and diabetes; states associated with an increased incidence of cardiovascular disease. We therefore investigated the direct effect of FGF21 on cardio-protection in obese and lean hearts in response to ischemia. Methods and Results: FGF21, FGF21-receptor 1 (FGFR1) and beta-Klotho (βKlotho) were expressed in rodent, human hearts and primary rat cardiomyocytes. Cardiac FGF21 was expressed and secreted (real time RT-PCR/western blot and ELISA) in an autocrine-paracrine manner, in response to obesity and hypoxia, involving FGFR1-βKlotho components. Cardiac-FGF21 expression and secretion were increased in response to global ischemia. In contrast βKlotho was reduced in obese hearts. In isolated adult rat cardiomyocytes, FGF21 activated PI3K/Akt (phosphatidylinositol 3-kinase/Akt), ERK1/2(extracellular signal-regulated kinase) and AMPK (AMP-activated protein kinase) pathways. In Langendorff perfused rat [adult male wild-type wistar] hearts, FGF21 administration induced significant cardio-protection and restoration of function following global ischemia. Inhibition of PI3K/Akt, AMPK, ERK1/2 and ROR-α (retinoic-acid receptor alpha) pathway led to significant decrease of FGF21 induced cardio-protection and restoration of cardiac function in response to global ischemia. More importantly, this cardio-protective response induced by FGF21 was reduced in obesity, although the cardiac expression profiles and circulating FGF21 levels were increased. Conclusion: In an ex vivo Langendorff system, we show that FGF21 induced cardiac protection and restoration of cardiac function involving autocrine-paracrine pathways, with reduced effect in obesity. Collectively, our findings provide novel insights into FGF21-induced cardiac effects in obesity and ischemia

    Toll-Like Receptor 3 Signaling on Macrophages Is Required for Survival Following Coxsackievirus B4 Infection

    Get PDF
    Toll-like receptor 3 (TLR3) has been proposed to play a central role in the early recognition of viruses by sensing double stranded RNA, a common intermediate of viral replication. However, several reports have demonstrated that TLR3 signaling is either dispensable or even harmful following infection with certain viruses. Here, we asked whether TLR3 plays a role in the response to coxsackievirus B4 (CB4), a prevalent human pathogen that has been associated with pancreatitis, myocarditis and diabetes. We demonstrate that TLR3 signaling on macrophages is critical to establish protective immunity to CB4. TLR3 deficient mice produced reduced pro-inflammatory mediators and are unable to control viral replication at the early stages of infection resulting in severe cardiac damage. Intriguingly, the absence of TLR3 did not affect the activation of several key innate and adaptive cellular effectors. This suggests that in the absence of TLR3 signaling on macrophages, viral replication outpaces the developing adaptive immune response. We further demonstrate that the MyD88-dependent signaling pathways are not only unable to compensate for the loss of TLR3, they are also dispensable in the response to this RNA virus. Our results demonstrate that TLR3 is not simply part of a redundant system of viral recognition, but rather TLR3 plays an essential role in recognizing the molecular signatures associated with specific viruses including CB4

    Contusion myocardiqueMyocardial contusion.

    No full text

    Blunt Cardiac Injury

    No full text
    corecore