18,502 research outputs found
Anisotropy in Fracking: A Percolation Model for Observed Microseismicity
Hydraulic fracturing (fracking) using high pressures and a low viscosity
fluid allow the extraction of large quantiles of oil and gas from very low
permeability shale formations. The initial production of oil and gas at depth
leads to high pressures and an extensive distribution of natural fractures
which reduce the pressures. With time these fractures heal, sealing the
remaining oil and gas in place. High volume fracking opens the healed fractures
allowing the oil and gas to flow the horizontal productions wells. We model the
injection process using invasion percolation. We utilize a 2D square lattice of
bonds to model the sealed natural fractures. The bonds are assigned random
strengths and the fluid, injected at a point, opens the weakest bond adjacent
to the growing cluster of opened bonds. Our model exhibits burst dynamics in
which the clusters extends rapidly into regions with weak bonds. We associate
these bursts with the microseismic activity generated by fracking injections. A
principal object of this paper is to study the role of anisotropic stress
distributions. Bonds in the -direction are assigned higher random strengths
than bonds in the -direction. We illustrate the spatial distribution of
clusters and the spatial distribution of bursts (small earthquakes) for several
degrees of anisotropy. The results are compared with observed distributions of
microseismicity in a fracking injection. Both our bursts and the observed
microseismicity satisfy Gutenberg-Richter frequency-size statistics.Comment: 14 pages, 10 figure
Fermions out of Dipolar Bosons in the lowest Landau level
In the limit of very fast rotation atomic Bose-Einstein condensates may
reside entirely in the lowest two-dimensional Landau level (LLL). For small
enough filling factor of the LLL, one may have formation of fractional quantum
Hall states. We investigate the case of bosons with dipolar interactions as may
be realized with Chromium-52 atoms. We show that at filling factor equal to
unity the ground state is a Moore-Read (a.k.a Pfaffian) paired state as is the
case of bosons with purely s-wave scattering interactions. This Pfaffian state
is destabilized when the interaction in the s-wave channel is small enough and
the ground state is a stripe phase with unidimensional density modulation. For
filling factor 1/3, we show that there is formation of a Fermi sea of
``composite fermions''. These composites are made of one boson bound with three
vortices. This phase has a wide range of stability and the effective mass of
the fermions depends essentially only of the scattering amplitude in momentum
channels larger or equal to 2. The formation of such a Fermi sea opens up a new
possible route to detection of the quantum Hall correlations.Comment: 12 pages, 5 figures, published versio
Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains
Within a fully cosmological hydrodynamical simulation, we form a galaxy which
rotates at 140 km/s, and is characterised by two loose spiral arms and a bar,
indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has
no classical bulge, with a pure disc profile at z=1, well after the major
merging activity has ended. A long-lived bar subsequently forms, resulting in
the formation of a secularly-formed "pseudo" bulge, with the final
bulge-to-total light ratio B/T=0.21. We show that the majority of gas which
loses angular momentum and falls to the central region of the galaxy during the
merging epoch is blown back into the hot halo, with much of it returning later
to form stars in the disc. We propose that this mechanism of redistribution of
angular momentum via a galactic fountain, when coupled with the results from
our previous study which showed why gas outflows are biased to have low angular
momentum, can solve the angular momentum/bulgeless disc problem of the cold
dark matter paradigm.Comment: 9 Pages, 10 Figures, accepted MNRAS version. Comments welcom
The Role of Cold Flows in the Assembly of Galaxy Disks
We use high resolution cosmological hydrodynamical simulations to demonstrate
that cold flow gas accretion, particularly along filaments, modifies the
standard picture of gas accretion and cooling onto galaxy disks. In the
standard picture, all gas is initially heated to the virial temperature of the
galaxy as it enters the virial radius. Low mass galaxies are instead dominated
by accretion of gas that stays well below the virial temperature, and even when
a hot halo is able to develop in more massive galaxies there exist dense
filaments that penetrate inside of the virial radius and deliver cold gas to
the central galaxy. For galaxies up to ~L*, this cold accretion gas is
responsible for the star formation in the disk at all times to the present.
Even for galaxies at higher masses, cold flows dominate the growth of the disk
at early times. Within this modified picture, galaxies are able to accrete a
large mass of cold gas, with lower initial gas temperatures leading to shorter
cooling times to reach the disk. Although star formation in the disk is
mitigated by supernovae feedback, the short cooling times allow for the growth
of stellar disks at higher redshifts than predicted by the standard model.Comment: accepted to Ap
Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5 % biodiesel (B5) blend.
An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) A simple urban route; (2) A combined urban/inter-urban route; and, (3) An urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NOx emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects
Strategic Outsourcing: Evidence from the British Companies
Outsourcing has become an increasingly popular option for many organisations. But they vary in terms of activities being outsourced, reasons for and benefits from outsourcing, and how the decision was made. This article presents an empirical research on fourteen companies. It found out, a) in most cases it was the ‘peripheral’ support activity being outsourced with cost reduction as the primary driver; b) outsourcing decision was being made early in the process without active involvement of the in-house provider; and c) there were problems in supplier selection and management. The research identified pre-outsourcing decision process and post-outsourcing management as the two key areas that gave cause for concern, and offered recommendations for improvement
Cd3As2 is Centrosymmetric
This is a revised version of a manuscript that was originally posted here in
February of 2014. It has been accepted at the journal Inorganic Chemistry after
reviews that included those of two crystallographers who made sure all the t's
were crossed and the i's were dotted. The old work (from 1968) that said that
Cd3As2 was noncentrosymmetric was mistaken, with the authors of that study
making a type of error that in the 1980s became infamous in crystallography. As
a result of the increased scrutiny of the issue of centrosymmetricity of the
1980's, there are now much better analysis tools to resolve the issue fully,
and its important to understand that not just our crystals are centrosymmetric,
even the old guy's crystals were centrosymmetric (and by implication everyone's
are). There is no shame in having made that error back in the day and those
authors would not find the current centrosymmetric result controversial; their
paper is excellent in all other aspects. This manuscript describes how the
structure is determined, explains the structure schematically, calculates the
electronic structure based on the correct centrosymmetric crystal structure,
and gives the structural details that should be used for future analysis and
modeling.Comment: Accepted by ACS Inorganic Chemistr
- …
