3,787 research outputs found
Global General Relativistic Magnetohydrodynamic Simulations of Accretion Tori
This paper presents an initial survey of the properties of accretion flows in
the Kerr metric from three-dimensional, general relativistic
magnetohydrodynamic simulations of accretion tori. We consider three fiducial
models of tori around rotating, both prograde and retrograde, and nonrotating
black holes; these three fiducial models are also contrasted with axisymmetric
simulations and a pseudo-Newtonian simulation with equivalent initial
conditions to delineate the limitations of these approximations.Comment: Submitted to ApJ. 30 pages, 21 figures. Animations and
high-resolution version of figures available at
http://www.astro.virginia.edu/~jd5
Global MHD Simulations of Cylindrical Keplerian Disks
This paper presents a series of global three dimensional accretion disk
simulations carried out in the cylindrical limit in which the vertical
component of the gravitational field is neglected. The simulations use a
cylindrical pseudo-Newtonian potential to model the main dynamical properties
of the Schwarzschild metric. The disks are initially constant density with a
Keplerian angular momentum distribution and contain a weak toroidal or vertical
field. These simulations reaffirm many of the conclusions of previous local
simulations. The magnetorotational instability grows rapidly and produces MHD
turbulence with a significant Maxwell stress which drives accretion.
Tightly-wrapped low- spiral waves are prominent. In some simulations radial
variations in Maxwell stress concentrate gas into rings, creating substantial
spatial inhomogeneities. There is a nonzero stress at the marginally stable
orbit which produces a small decline in specific angular momentum inside the
last stable orbit. Detailed comparisons between simulations are used to examine
the effects of computational domain and equation of state. Simulations that
begin with vertical fields have greater field amplification and higher ratios
of stress to magnetic pressure compared with those beginning with toroidal
fields. In contrast to MHD, hydrodynamics alone neither creates nor sustains
turbulence.Comment: Submitted to the Astrophysical Journal Web version of paper and MPEG
animations can be found at http://www.astro.virginia.edu/~jh8h/cylinder
The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks
We present three-dimensional magnetohydrodynamic simulations of the nonlinear
evolution of the magnetorotational instability (MRI) with a non-zero Ohmic
resistivity. The properties of the saturated state depend on the initial
magnetic field configuration. In simulations with an initial uniform vertical
field, the MRI is able to support angular momentum transport even for large
resistivities through the quasi-periodic generation of axisymmetric radial
channel solutions rather than through the maintenance of anisotropic
turbulence. Simulations with zero net flux show that the angular momentum
transport and the amplitude of magnetic energy after saturation are
significantly reduced by finite resistivity, even at levels where the linear
modes are only slightly affected. This occurs at magnetic Reynolds numbers
expected in low, cool states of dwarf novae, these results suggest that finite
resistivity may account for the low and high angular momentum transport rates
inferred for these systems.Comment: 8 figures, accepted for publication in Ap
What's the point of knowing how?
Why is it useful to talk and think about knowledge-how? Using Edward Craigâs discussion of the function of the concepts of knowledge and knowledge-how as a jumping off point, this paper argues that considering this question can offer us new angles on the debate about knowledge-how. We consider two candidate functions for the concept of knowledge-how: pooling capacities, and mutual reliance. Craig makes the case for pooling capacities, which connects knowledge-how to our need to pool practical capacities. I argue that the evidence is much more equivocal. My suggested diagnosis is that the concept of knowledge-how plays both functions, meaning that the concept of knowledge-how is inconsistent, and that the debate about knowledge-how is at least partly a metalinguistic negotiation. In closing, I suggest a way to revise the philosophical concept of knowledge how
Vortices in Thin, Compressible, Unmagnetized Disks
We consider the formation and evolution of vortices in a hydrodynamic
shearing-sheet model. The evolution is done numerically using a version of the
ZEUS code. Consistent with earlier results, an injected vorticity field evolves
into a set of long-lived vortices, each of which has a radial extent comparable
to the local scale height. But we also find that the resulting velocity field
has a positive shear stress, . This effect appears
only at high resolution. The transport, which decays with time as t^-1/2,
arises primarily because the vortices drive compressive motions. This result
suggests a possible mechanism for angular momentum transport in low-ionization
disks, with two important caveats: a mechanism must be found to inject
vorticity into the disk, and the vortices must not decay rapidly due to
three-dimensional instabilities.Comment: 8 pages, 10 figures (high resolution figures available in ApJ
electronic edition
Turbulence in Global Simulations of Magnetized Thin Accretion Disks
We use a global magnetohydrodynamic simulation of a geometrically thin
accretion disk to investigate the locality and detailed structure of turbulence
driven by the magnetorotational instability (MRI). The model disk has an aspect
ratio , and is computed using a higher-order Godunov MHD
scheme with accurate fluxes. We focus the analysis on late times after the
system has lost direct memory of its initial magnetic flux state. The disk
enters a saturated turbulent state in which the fastest growing modes of the
MRI are well-resolved, with a relatively high efficiency of angular momentum
transport . The accretion stress
peaks at the disk midplane, above and below which exists a moderately
magnetized corona with patches of superthermal field. By analyzing the spatial
and temporal correlations of the turbulent fields, we find that the spatial
structure of the magnetic and kinetic energy is moderately well-localized (with
correlation lengths along the major axis of and respectively),
and generally consistent with that expected from homogenous incompressible
turbulence. The density field, conversely, exhibits both a longer correlation
length and a long correlation time, results which we ascribe to the importance
of spiral density waves within the flow. Consistent with prior results, we show
that the mean local stress displays a well-defined correlation with the local
vertical flux, and that this relation is apparently causal (in the sense of the
flux stimulating the stress) during portions of a global dynamo cycle. We argue
that the observed flux-stress relation supports dynamo models in which the
structure of coronal magnetic fields plays a central role in determining the
dynamics of thin-disk accretion.Comment: 24 pages and 25 figures. MNRAS in press. Version with high resolution
figures available from
http://jila.colorado.edu/~krb3u/Thin_Disk/thin_disk_turbulence.pd
Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case
We report on the second phase of our study of slightly rotating accretion
flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows
with a spherically symmetric density distribution at the outer boundary, but
with spherical symmetry broken by the introduction of a small,
latitude-dependent angular momentum and a weak radial magnetic field. We study
accretion flows by means of numerical 2D, axisymmetric, MHD simulations with
and without resistive heating. Our main result is that the properties of the
accretion flow depend mostly on an equatorial accretion torus which is made of
the material that has too much angular momentum to be accreted directly. The
torus accretes, however, because of the transport of angular momentum due to
the magnetorotational instability (MRI). Initially, accretion is dominated by
the polar funnel, as in the hydrodynamic inviscid case, where material has zero
or very low angular momentum. At the later phase of the evolution, the torus
thickens towards the poles and develops a corona or an outflow or both.
Consequently, the mass accretion through the funnel is stopped. The accretion
of rotating gas through the torus is significantly reduced compared to the
accretion of non-rotating gas (i.e., the Bondi rate). It is also much smaller
than the accretion rate in the inviscid, weakly rotating case.Our results do
not change if we switch on or off resistive heating. Overall our simulations
are very similar to those presented by Stone, Pringle, Hawley and Balbus
despite different initial and outer boundary conditions. Thus, we confirm that
MRI is very robust and controls the nature of radiatively inefficient accretion
flows.Comment: submitted in Ap
An Accretion-Jet Model for Black Hole Binaries: Interpreting the Spectral and Timing Features of XTE J1118+480
Multi-wavelength observations of the black hole X-ray binary XTE J1118+480
have offered abundant spectral and timing information about the source, and
have thus provided serious challenges to theoretical models. We propose a
coupled accretion-jet model to interpret the observations. We model the
accretion flow as an outer standard thin accretion disk truncated at a
transition radius by an inner hot accretion flow. The accretion flow accounts
for the observed UV and X-ray emission, but it substantially under-predicts the
radio and infrared fluxes, even after we allow for nonthermal electrons in the
hot flow. We attribute the latter components to a jet. We model the jet
emission by means of the internal shock scenario which is widely employed for
gamma-ray bursts. In our accretion-jet model of XTE J1118+480, the jet
dominates the radio and infrared emission, the thin disk dominates the UV
emission, and the hot flow produces most of the X-ray emission. The optical
emission has contributions from all three components: jet, thin disk, and hot
flow. The model qualitatively accounts for timing features, such as the
intriguing positive and negative time lags between the optical and X-ray
emission, and the wavelength-dependent variability amplitude.Comment: 27 pages, 4 figures (one in color); to appear in ApJ in Feb. 200
- âŠ