8,628 research outputs found

    Characterisation and calibration of a scintillating fibre detector with > 4000 multi-anode photomultiplier channels

    Full text link
    In the Kaos spectrometer at the Mainz Microtron a high-resolution coordinate detector for high-energy particles is operated. It consists of scintillating fibres with diameters of 4000 multi-anode photomultiplier channels. It is one of the most modern focal-plane detectors for magnetic spectrometers world-wide. To correct variations in the detection efficiency, caused by the different gains and the different optical transmittances, a fully automated off-line calibration procedure has been developed. The process includes the positioning of a radioisotope source alongside the detector plane and the automated acquisition and analysis of the detector signals. It was possible to characterise and calibrate each individual fibre channel with a low degree of human interaction.Comment: Nucl. Instrum. Meth. A (2012

    A Tracking Fiber Detector based on Silicon Photomultipliers for the Kaos Spectrometer

    Full text link
    A tracking detector based on two meters long scintillating fibers read out by silicon photomultipliers (SiPM) is being developed for the Kaos spectrometer at the Mainz Microtron MAMI. Results from a prototype setup using 2 mm square fibers and large area SiPM readout are presented. The detection efficiency of such a combination was measured to be between 83 and 100% depending on the threshold on the SiPM amplitude. A Monte Carlo simulation based on a physical model was employed in order to extract the photon detection efficiency of the SiPM devices.Comment: Contributed to 2008 IEEE Nuclear Science Symposium, 19-25 October 2008, Dresden, German

    Detector developments for the hypernuclear programme at PANDA

    Full text link
    The technical design of the PANDA experiment at the future FAIR facility next to GSI is progressing. At the proposed anti-proton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the Collaboration. The hypernuclear experiments require (i) a dedicated internal target, (ii) an active secondary target of alternating silicon and absorber material layers, (iii) high purity germanium (HPGe) detectors, and (iv) a good particle identification system for low momentum kaons. All systems need to operate in the presence of a high magnetic field and a large hadronic background. The status of the detector developments for this programme is summarized.Comment: Contributed to 2008 IEEE Nuclear Science Symposium, 19-25 October 2008, Dresden, German

    Direct and Inverse Methods for Scattering by Cracks at High Frequencies

    Get PDF
    Further results are presented for the direct problem of scattering of high-frequency waves by cracks in elastic solids. Results for a penny-shaped crack, obtained on the basis of geometrical diffraction theory, are compared with experimental data. For simple crack geometries a hybrid method, whereby the crack-opening displacement is computed by ray theory, and the scattered field is subsequently obtained by the use of a representation theorem, is tested by comparison with exact results. The simple form of the far-field high-frequency solutions to the direct scattering problem suggests the application of Fourier-type integrals to solve the inverse problem. Two different inversion integrals are discussed. The inversion method is checked by applying it to the scattered field of a flat elliptical crack, for which an analytical expression is derived. Some computational technicalities are discussed, and numerical results are presented

    Telemedicine: Benefits, Challenges, and its Great Potential

    Get PDF

    Measurements of Local Surface Wave Speeds by a Dual-Probe Laser Interferometer

    Get PDF
    In a recent paper Huang and Achenbach [1] have reported the development of a dual-probe laser interferometer. In addition to the usual advantages of a laser interferometer such as no contact and point detection, the dual-probe interferometer measures the same signal at two points along its propagation path. Hence the instrument is particularly useful for the measurement of surface wave speed and attenuation. Such measurements provide valuable information on the near-surface material properties as well as the condition of the surface
    corecore