9,959 research outputs found

    Comment on 'Secure Communication using mesoscopic coherent states', Barbosa et al, Phys Rev Lett 90, 227901 (2003)

    Full text link
    In a recent letter, Barbosa et al [PRL 90, 227901(2003)] claim that secure communication is possible with bright coherent pulses, by using quantum noise to hide the data from an eavesdropper. We show here that the secrecy in the scheme of Barbosa et al is unrelated to quantum noise, but rather derives from the secret key that sender and receiver share beforehand

    Unconditionally secure one-way quantum key distribution using decoy pulses

    Get PDF
    We report here a complete experimental realization of one-way decoy-pulse quantum key distribution, demonstrating an unconditionally secure key rate of 5.51 kbps for a 25.3 km fibre length. This is two orders of magnitudes higher than the value that can be obtained with a non-decoy system. We introduce also a simple test for detecting the photon number splitting attack and highlight that it is essential for the security of the technique to fully characterize the source and detectors used.Comment: 10 pages, 5 figure

    Reply to "Comment on `Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography'"

    Full text link
    This is a Reply to the Comment by Lydersen et al. [arXiv: 1106.3756v1]

    The spectral energy distribution of NGC 1275

    Get PDF
    An analysis of absolute spectral energy distributions of interstellar gas for a galaxy (NGC 1275) is presented. Infrared spectra data shows heavy reddening. It is proposed that the interstellar gas may be ionized by shock waves or by nonthermal or stellar radiation. It is suggested, that high velocity, emission-line knots are H2 regions in a Perseus cluster galaxy or intergalactic gas cloud seen in projection against NGC 1275

    Polarization correlated photons from a positively charged quantum dot

    Get PDF
    Polarized cross-correlation spectroscopy on a quantum dot charged with a single hole shows the sequential emission of photons with common circular polarization. This effect is visible without magnetic field, but becomes more pronounced as the field along the quantization axis is increased. We interpret the data in terms of electron dephasing in the X+ state caused by the Overhauser field of nuclei in the dot. We predict the correlation timescale can be increased by accelerating the emission rate with cavity-QED

    Quantum key distribution over 122 km of standard telecom fiber

    Full text link
    We report the first demonstration of quantum key distribution over a standard telecom fiber exceeding 100 km in length. Through careful optimisation of the interferometer and single photon detector, we achieve a quantum bit error ratio of 8.9% for a 122km link, allowing a secure shared key to be formed after error correction and privacy amplification. Key formation rates of up to 1.9 kbit/sec are achieved depending upon fiber length. We discuss the factors limiting the maximum fiber length in quantum cryptography

    The Black Hole Mass - Galaxy Bulge Relationship for QSOs in the SDSS DR3

    Get PDF
    We investigate the relationship between black hole mass and host galaxy velocity dispersion for QSOs in Data Release 3 of the Sloan Digital Sky Survey. We derive black hole mass from the broad Hbeta line width and continuum luminosity, and the bulge stellar velocity dispersion from the [OIII] narrow line width. At higher redshifts, we use MgII and [OII] in place of Hbeta and [OIII]. For redshifts z < 0.5, our results agree with the black hole mass - bulge velocity dispersion relationship for nearby galaxies. For 0.5 < z < 1.2, this relationship appears to show evolution with redshift in the sense that the bulges are too small for their black holes. However, we find that part of this apparent trend can be attributed to observational biases, including a Malmquist bias involving the QSO luminosity. Accounting for these biases, we find ~0.2 dex evolution in the black hole mass-bulge velocity dispersion relationship between now and redshift z ~ 1.Comment: Accepted by ApJ, 15 pages, 9 figure
    corecore