50,374 research outputs found

    Nature of the spin-glass phase in dense packings of Ising dipoles with random anisotropy axes

    Get PDF
    By Monte Carlo simulations, we study the character of the spinglass (SG) phase in dense disordered packings of magnetic nanoparticles (NPs). We focus on NPs which have large uniaxial anisotropies and can be well represented as Ising dipoles. Dipoles are placed on SC lattices and point along randomly oriented axes. From the behaviour of a SG correlation length we determine the transition temperature Tc between the paramagnetic and a SG phase. For temperatures well below Tc we find distributions of the SG overlap parameter q that are strongly sample-dependent and exhibit several spikes. We find that the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with the system sizes studied. We compare these results with the ones found previously for 3D site-diluted systems of parallel Ising dipoles and with the behaviour of the Sherrington-Kirkpatrick model.We thank financial support from MINECO FIS2013-43201-P Gran

    Environmental Law: A Reevaluation of Federal Pre-Emption and the Commerce Clause

    Get PDF
    This Comment addresses how the concern of state and local governments to regain control over environmental regulation has resulted in a marked increase in conflicts with the commerce and supremacy clauses of the Constitution. Various tests have been used by the courts to determine violations of these Constitutional provisions where environmental objectives are sought through local laws. In the field of environmental litigation, traditional tests are constantly challenged to meet the changing moral climate of the nation. This Comment weighs the desire of local legislatures for more responsive environmental regulation against the federal goal of uniform regulation and unrestrained interstate commerce, concluding that the court must decide on a policy of pre-emption in order for the nation to know whether environmental reform will be spearheaded from the states or the federal government

    Low-temperature spin-glass behaviour in a diluted dipolar Ising system

    Get PDF
    Using Monte Carlo simulations, we study the character of the spin-glass (SG) state of a site-diluted dipolar Ising model. We consider systems of dipoles randomly placed on a fraction x of all L^3 sites of a simple cubic lattice that point up or down along a given crystalline axis. For x < 0.65 these systems are known to exhibit an equilibrium spin-glass phase below a temperature T_sg proportional to x. At high dilution and very low temperatures, well deep in the SG phase, we find spiky distributions of the overlap parameter q that are strongly sample-dependent. We focus on spikes associated with large excitations. From cumulative distributions of q and a pair correlation function averaged over several thousands of samples we find that, for the system sizes studied, the average width of spikes, and the fraction of samples with spikes higher than a certain threshold does not vary appreciably with L. This is compared with the behaviour found for the Sherrington-Kirkpatrick model.Comment: 9 LaTeX pages, 9 pdf figures, 2 table

    Equilibrium spin-glass transition of magnetic dipoles with random anisotropy axes on a site diluted lattice

    Get PDF
    We study partially occupied lattice systems of classical magnetic dipoles which point along randomly oriented axes. Only dipolar interactions are taken into account. The aim of the model is to mimic collective effects in disordered assemblies of magnetic nanoparticles. From tempered Monte Carlo simulations, we obtain the following equilibrium results. The zero temperature entropy approximately vanishes. Below a temperature T_c, given by k_B T_c= (0.95 +- 0.1)x e_d, where e_d is a nearest neighbor dipole-dipole interaction energy and x is the site occupancy rate, we find a spin glass phase. In it, (1) the mean value , where q is the spin overlap, decreases algebraically with system size N as N increases, and (2) D|q| = 0.5 (T/x)^1/2, independently of N, where D|q| is the root mean square deviation of |q|.Comment: 7 LaTeX pages, 7 eps figures. Submitted to PRB on 30 December 200

    Monte Carlo study of the spin-glass phase of the site-diluted dipolar Ising model

    Get PDF
    By tempered Monte Carlo simulations, we study site-diluted Ising systems of magnetic dipoles. All dipoles are randomly placed on a fraction x of all L^3 sites of a simple cubic lattice, and point along a given crystalline axis. For x_c< x<=1, where x_c = 0.65, we find an antiferromagnetic phase below a temperature which vanishes as x tends to x_c from above. At lower values of x, we find an equilibrium spin-glass (SG) phase below a temperature given by k_B T_{sg} = x e_d, where e_d is a nearest neighbor dipole-dipole interaction energy. We study (a) the relative mean square deviation D_q^2 of |q|, where q is the SG overlap parameter, and (b) xi_L/L, where xi_L is a correlation length. From their variation with temperature and system size, we determine T_{sg}. In the SG phase, we find (i) the mean values and decrease algebraically with L as L increases, (ii) double peaked, but wide, distributions of q/ appear to be independent of L, and (iii) xi_L/L rises with L at constant T, but extrapolations to 1/L -> 0 give finite values. All of this is consistent with quasi-long-range order in the SG phase.Comment: 15 LaTeX pages, 15 figures, 3 tables. (typos fixed in Appendix A
    • …
    corecore