154 research outputs found

    Humoral response in a patient with cutaneous nocardiosis

    Get PDF
    The clinical appearance of infection due to Nocardia spp. varies widely. The law sensitivity of direct microscopy and the slow growth of the organism challenge the laboratory diagnosis. We present the case of a skin abscess in an immunocompetent man caused by Nocardia brasiliensis. Diagnosis was made by cultivation and 16S rRNA sequencing. Using indirect immunofluorescence and Western blot, a strong antibody response to the N. brasiliensis isolate could be demonstrated. Serological tests might therefore be useful for the diagnosis and management of nocardial infections, copyright (R) 2000 S. Karger AG, Basel

    Improvement of reporter activity by IRES-mediated polycistronic reporter system

    Get PDF
    Many in vitro and in vivo applications for transgenesis require co-expression of heterologous genes. The use of internal ribosome entry sites (IRESs) in dicistronic expression vectors enables the expression of two genes controlled by one promoter in target cells or whole organisms. Here we describe the expansion of IRES exploitation to generate multicistronic vectors capable of expressing multiple reporter genes, especially to improve the fluorescence yield of autofluorescent reporter gene products such as green fluorescent protein (GFP). We found that the increase in fluorescence output of GFP is proportional to the number of IRES-GFP repeats in the multicistronic vector. At least four genes can be expressed from a multicistonic vector by using tandem IRES elements, with no significant alteration of the expression level of the cap-dependent translated gene. Moreover, gene expression under the control of multiple IRES element has no effect on the posttranscriptional regulation through 3′-untranslated regions (3′UTR). Thus, endogenous gene expression and regulation, especially those controlled by weak promoters, can be analyzed with our IRES-dependent polycistronic reporter gene expression system

    Detection of Pseudomonas aeruginosa in sputum samples by modified fluorescent in situ hybridization

    Get PDF
    Pseudomonas aeruginosa is the most common and dominant infectious agent that causes chronic pneumonia in patients with cystic fibrosis (CF). Fluorescent in situ hybridization (FISH) is a powerful molecular method for the specific and rapid diagnosis of bacteria, including the detection of P. aeruginosa in sputum samples from CF patients. High background fluorescence of viscous sputum samples obtained from CF patients may impede detection of microorganisms by FISH. The aim of this study was to test the application of biotin during FISH technique to reduce unspecific background fluorescence in sputum samples to facilitate and improve detection of P. aeruginosa. Sixty-three sputum samples from CF patients were tested by FISH to detect P. aeruginosa. All the 63 samples were also examined by a modified FISH procedure including biotin treatment. The FISH results were compared with those of conventional culture method. The specificity of FISH was 100%. The sensitivity of FISH for detection of P. aeruginosa from samples without biotin treatment was 83.3%, whereas in biotin-treated samples was 88.1%. Biotin reduced background fluorescence of 12 sputum samples of CF patients and it did not show any adverse effect on FISH results of the remaining sputum samples. Therefore, using of biotin in FISH procedure seems to facilitate and improve the detection of respiratory tract infections by P. aeruginosa in this population

    How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication

    Get PDF
    Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections

    Metabolic host responses to infection by intracellular bacterial pathogens

    Get PDF
    The interaction of bacterial pathogens with mammal an hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies
    corecore