30 research outputs found

    Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome

    Get PDF
    Aims Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Nav1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. Methods and results SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Nav1.5 channels were expressed in HEK293 cells. Sodium currents (INa) were analysed using the whole-cell patch-clamp technique at 37°C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (Ito) was incorporated. A new mutation (C1850S) was identified in the Nav1.5 C-terminal domain. In HEK293 cells, mutant INa density was decreased by 62% at −20 mV. Inactivation of mutant INa was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of INa. In the simulations, the Ito density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. Conclusion Our data confirm that mutations of the C-terminal domain of Nav1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of Br

    Brugada syndrome and fever: Genetic and molecular characterization of patients carrying SCN5A mutations

    Get PDF
    Objective: Brugada syndrome (BrS) is characterized by ventricular tachyarrhythmias leading to sudden cardiac death and is caused, in part, by mutations in the SCN5A gene encoding the sodium channel Nav1.5. Fever can trigger or exacerbate the clinical manifestations of BrS. The aim of this work was to characterize the genetic and molecular determinants of fever-dependent BrS. Methods: Four male patients with typical BrS ST-segment elevation in V1-V3 or ventricular arrhythmias during fever were screened for mutations in the SCN5A gene. Wild-type (WT) and mutant Nav1.5 channels were expressed in HEK293 cells. The sodium currents (INa) were analysed using the whole-cell patch clamp technique at various temperatures. Protein expression of WT and mutant channels was studied by Western blot experiments. Results: Two mutations in SCN5A, L325R and R535X, were identified. Expression of the two mutant Nav1.5 channels in HEK293 cells revealed in each case a severe loss-of-function. Upon the increase of temperature up to 42 °C, we observed a pronounced acceleration of Nav1.5 activation and fast inactivation kinetics. Cardiac action potential modelling experiments suggest that in patients with reduced INa, fever could prematurely shorten the action potential by virtue of its effect on WT channels. Further experiments revealed that L325R channels are likely misfolded, since their function could be partially rescued by mexiletine or curcumin. In co-expression experiments, L325R channels interfered with the proper function of WT channels, suggesting that a dominant negative phenomenon may underlie BrS triggered by fever. Conclusions: The genetic background of BrS patients sensitive to fever is heterogeneous. Our experimental data suggest that the clinical manifestations of fever-exacerbated BrS may not be mutation specifi

    Silent brain infarcts impact on cognitive function in atrial fibrillation

    Full text link
    Aims: We aimed to investigate the association of clinically overt and silent brain lesions with cognitive function in atrial fibrillation (AF) patients. Methods and results: We enrolled 1227 AF patients in a prospective, multicentre cohort study (Swiss-AF). Patients underwent standardized brain magnetic resonance imaging (MRI) at baseline and after 2 years. We quantified new small non-cortical infarcts (SNCIs) and large non-cortical or cortical infarcts (LNCCIs), white matter lesions (WML), and microbleeds (Mb). Clinically, silent infarcts were defined as new SNCI/LNCCI on follow-up MRI in patients without a clinical stroke or transient ischaemic attack (TIA) during follow-up. Cognition was assessed using validated tests. The mean age was 71 years, 26.1% were females, and 89.9% were anticoagulated. Twenty-eight patients (2.3%) experienced a stroke/TIA during 2 years of follow-up. Of the 68 (5.5%) patients with ≥1 SNCI/LNCCI, 60 (88.2%) were anticoagulated at baseline and 58 (85.3%) had a silent infarct. Patients with brain infarcts had a larger decline in cognition [median (interquartile range)] changes in Cognitive Construct score [-0.12 (-0.22; -0.07)] than patients without new brain infarcts [0.07 (-0.09; 0.25)]. New WML or Mb were not associated with cognitive decline. Conclusion: In a contemporary cohort of AF patients, 5.5% had a new brain infarct on MRI after 2 years. The majority of these infarcts was clinically silent and occurred in anticoagulated patients. Clinically, overt and silent brain infarcts had a similar impact on cognitive decline. Clinical trial registration: ClinicalTrials.gov Identifier: NCT02105844, https://clinicaltrials.gov/ct2/show/NCT02105844. Keywords: Atrial fibrillation; Brain infarction; Cognitive function; Magnetic resonance imaging; Oral anticoagulation

    Long-term risk of adverse outcomes according to atrial fibrillation type

    Full text link
    Sustained forms of atrial fibrillation (AF) may be associated with a higher risk of adverse outcomes, but few if any long-term studies took into account changes of AF type and co-morbidities over time. We prospectively followed 3843 AF patients and collected information on AF type and co-morbidities during yearly follow-ups. The primary outcome was a composite of stroke or systemic embolism (SE). Secondary outcomes included myocardial infarction, hospitalization for congestive heart failure (CHF), bleeding and all-cause mortality. Multivariable adjusted Cox proportional hazards models with time-varying covariates were used to compare hazard ratios (HR) according to AF type. At baseline 1895 (49%), 1046 (27%) and 902 (24%) patients had paroxysmal, persistent and permanent AF and 3234 (84%) were anticoagulated. After a median (IQR) follow-up of 3.0 (1.9; 4.2) years, the incidence of stroke/SE was 1.0 per 100 patient-years. The incidence of myocardial infarction, CHF, bleeding and all-cause mortality was 0.7, 3.0, 2.9 and 2.7 per 100 patient-years, respectively. The multivariable adjusted (a) HRs (95% confidence interval) for stroke/SE were 1.13 (0.69; 1.85) and 1.27 (0.83; 1.95) for time-updated persistent and permanent AF, respectively. The corresponding aHRs were 1.23 (0.89, 1.69) and 1.45 (1.12; 1.87) for all-cause mortality, 1.34 (1.00; 1.80) and 1.30 (1.01; 1.67) for CHF, 0.91 (0.48; 1.72) and 0.95 (0.56; 1.59) for myocardial infarction, and 0.89 (0.70; 1.14) and 1.00 (0.81; 1.24) for bleeding. In this large prospective cohort of AF patients, time-updated AF type was not associated with incident stroke/SE

    Loss of biventricular pacing: what is the problem?

    No full text
    corecore