6 research outputs found

    Lenalidomide/melphalan/dexamethasone in newly diagnosed patients with immunoglobulin light chain amyloidosis: results of a prospective phase 2 study with long-term follow up

    Get PDF
    Chemotherapy in light chain amyloidosis aims to normalize the involved free light chain in serum, which leads to an improvement, or at least stabilization of organ function in most responding patients. We performed a prospective single center phase 2 trial with 50 untreated patients not eligible for high-dose treatment. The treatment schedule comprised 6 cycles of oral lenalidomide, melphalan and dexamethasone every 4 weeks. After 6 months, complete remission was achieved in 9 patients (18%), very good partial remission in 16 (32%) and partial response in 9 (18%). Overall, organ response was observed in 24 patients (48%). Hematologic and cardiac toxicities were predominant adverse events. Mortality at 3 months was low at 4% (n=2) despite the inclusion of 36% of patients (n=18) with cardiac stage Mayo 3. After a median follow-up of 50 months, median overall and event-free survival were 67.5 months and 25.1 months, respectively. We conclude that the treatment of lenalidomide, melphalan and dexamethasone is very effective in achieving a hematologic remission, organ response and, consecutively, a long survival in transplant ineligible patients with light chain amyloidosis. However, as toxicity and tolerability are the major problems of a 3-drug regimen, a strict surveillance program is necessary and sufficient to avoid severe toxicities. clinicaltrials.gov Identifier: 00883623 (Eudract2008-001405-41)

    Dynamics of torque teno virus load in kidney transplant recipients with indication biopsy and therapeutic modifications of immunosuppression

    Get PDF
    Following kidney transplantation, lifelong immunosuppressive therapy is essential to prevent graft rejection. On the downside, immunosuppression increases the risk of severe infections, a major cause of death among kidney transplant recipients (KTRs). To improve post-transplant outcomes, adequate immunosuppressive therapy is therefore a challenging but vital aspect of clinical practice. Torque teno virus load (TTVL) was shown to reflect immune competence in KTRs, with low TTVL linked to an elevated risk for rejections and high TTVL associated with infections in the first year post-transplantation. Yet, little is known about the dynamics of TTVL after the first year following transplantation and how TTVL changes with respect to short-term modifications in immunosuppressive therapy. Therefore, we quantified TTVL in 106 KTRs with 108 clinically indicated biopsies, including 65 biopsies performed >12 months post-transplantation, and correlated TTVL to histopathology. In addition, TTVL was quantified at 7, 30, and 90 days post-biopsy to evaluate how TTVL was affected by changes in immunosuppression resulting from interventions based on histopathological reporting. TTVL was highest in patients biopsied between 1 and 12 months post-transplantation (N = 23, median 2.98 × 107 c/mL) compared with those biopsied within 30 days (N = 20, median 7.35 × 103 c/mL) and > 1 year post-transplantation (N = 65, median 1.41 × 104 c/mL; p < 0.001 for both). Patients with BK virus-associated nephropathy (BKVAN) had significantly higher TTVL than patients with rejection (p < 0.01) or other pathologies (p < 0.001). When converted from mycophenolic acid to a mTOR inhibitor following the diagnosis of BKVAN, TTVL decreased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.01 for both). In KTR with high-dose corticosteroid pulse therapy for rejection, TTVL increased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.05 and p < 0.01, respectively). Of note, no significant changes were seen in TTVL within 7 days of changes in immunosuppressive therapy. Additionally, TTVL varied considerably with time since transplantation and among individuals, with a significant influence of age and BMI on TTVL (p < 0.05 for all). In conclusion, our findings indicate that TTVL reflects changes in immunosuppressive therapy, even in the later stages of post-transplantation. To guide immunosuppressive therapy based on TTVL, one should consider inter- and intraindividual variations, as well as potential confounding factors

    Concurrent light chain amyloidosis and proximal tubulopathy: Insights into different aggregation behavior—A case report

    No full text
    Abstract Due to differences in the protein folding mechanisms, it is exceedingly rare for amyloid light chain (AL) amyloidosis and monoclonal gammopathy of renal significance (MGRS) to coexist. We herein report the first case of concurrent AL amyloidosis and a subclass of MGRS, light chain proximal tubulopathy (LCPT). The 53‐year‐old female was diagnosed with smoldering myeloma immunoglobulin G kappa and AL amyloidosis with deposits in fat and gastrointestinal tissue. The kidney biopsy did not show amyloid deposits but electron microscopy revealed the presence of LCPT with crystal formation in proximal tubular epithelial cells. This case illustrates the complex pathophysiology of protein deposition in monoclonal gammopathies

    Data_Sheet_1_Dynamics of torque teno virus load in kidney transplant recipients with indication biopsy and therapeutic modifications of immunosuppression.PDF

    No full text
    Following kidney transplantation, lifelong immunosuppressive therapy is essential to prevent graft rejection. On the downside, immunosuppression increases the risk of severe infections, a major cause of death among kidney transplant recipients (KTRs). To improve post-transplant outcomes, adequate immunosuppressive therapy is therefore a challenging but vital aspect of clinical practice. Torque teno virus load (TTVL) was shown to reflect immune competence in KTRs, with low TTVL linked to an elevated risk for rejections and high TTVL associated with infections in the first year post-transplantation. Yet, little is known about the dynamics of TTVL after the first year following transplantation and how TTVL changes with respect to short-term modifications in immunosuppressive therapy. Therefore, we quantified TTVL in 106 KTRs with 108 clinically indicated biopsies, including 65 biopsies performed >12 months post-transplantation, and correlated TTVL to histopathology. In addition, TTVL was quantified at 7, 30, and 90 days post-biopsy to evaluate how TTVL was affected by changes in immunosuppression resulting from interventions based on histopathological reporting. TTVL was highest in patients biopsied between 1 and 12 months post-transplantation (N = 23, median 2.98 × 107 c/mL) compared with those biopsied within 30 days (N = 20, median 7.35 × 103 c/mL) and > 1 year post-transplantation (N = 65, median 1.41 × 104 c/mL; p < 0.001 for both). Patients with BK virus-associated nephropathy (BKVAN) had significantly higher TTVL than patients with rejection (p < 0.01) or other pathologies (p < 0.001). When converted from mycophenolic acid to a mTOR inhibitor following the diagnosis of BKVAN, TTVL decreased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.01 for both). In KTR with high-dose corticosteroid pulse therapy for rejection, TTVL increased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.05 and p < 0.01, respectively). Of note, no significant changes were seen in TTVL within 7 days of changes in immunosuppressive therapy. Additionally, TTVL varied considerably with time since transplantation and among individuals, with a significant influence of age and BMI on TTVL (p < 0.05 for all). In conclusion, our findings indicate that TTVL reflects changes in immunosuppressive therapy, even in the later stages of post-transplantation. To guide immunosuppressive therapy based on TTVL, one should consider inter- and intraindividual variations, as well as potential confounding factors.</p
    corecore