2,756 research outputs found
A user-friendly fully digital TDPAC-spectrometer
A user-friendly fully digital TDPAC-spectrometer with six detectors and fast digitizers using Field Programmable Gate Arrays is described and performance data are given
Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants
Cell-surface interactions play a crucial role for biomaterial application in orthopaedics.
It is evident that not only the chemical composition of solid substances influence cellular adherence,
migration, proliferation and differentiation but also the surface topography of a biomaterial.
The progressive application of nanostructured surfaces in medicine has gained increasing interest
to improve the cytocompatibility and osteointegration of orthopaedic implants. Therefore, the
understanding of cell-surface interactions is of major interest for these substances. In this review,
we elucidate the principle mechanisms of nano- and microscale cell-surface interactions in vitro for
different cell types onto typical orthopaedic biomaterials such as titanium (Ti),
cobalt-chrome-molybdenum (CoCrMo) alloys, stainless steel (SS), as well as synthetic polymers
(UHMWPE, XLPE, PEEK, PLLA). In addition, effects of nano- and microscaled particles and their
significance in orthopaedics were reviewed. The significance for the cytocompatibility
of nanobiomaterials is discussed critically
QCD Corrections to Vector-Boson Fusion Processes in Warped Higgsless Models
We discuss the signatures of a representative Higgsless model with ideal
fermion delocalization in vector-boson fusion processes, focusing on the gold-
and silver-plated decay modes of the gauge bosons at the CERN-Large Hadron
Collider. For this purpose, we have developed a fully-flexible parton-level
Monte-Carlo program, which allows for the calculation of cross sections and
kinematic distributions within experimentally feasible selection cuts at
NLO-QCD accuracy. We find that Kaluza-Klein resonances give rise to very
distinctive distributions of the decay leptons. Similar to the Standard Model
case, within the Higgsless scenario the perturbative treatment of the
vector-boson scattering processes is under excellent control.Comment: 22 pages, 20 figure
Improving Monolithic Perovskite Silicon Tandem Solar Cells From an Optical Viewpoint
Perovskite silicon tandem solar cells are the most promising concept for a future photovoltaic technology. We report on recent progress from an optical viewpoint and disucss how we achieved more than 25 device efficienc
Biophysically motivated efficient estimation of the spatially isotropic R*2 component from a single gradient‐recalled echo measurement
Purpose
To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation‐dependent part of R*2 using a single gradient‐recalled echo (GRE) measurement.
Methods
The proposed method utilized a temporal second‐order approximation of the hollow‐cylinder‐fiber model, in which the parameter describing the linear signal decay corresponded to the orientation‐independent part of R*2. The estimated parameters were compared to the classical, mono‐exponential decay model for R*2 in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R*2, it was compared to the established phenomenological method for separating R*2 into orientation‐dependent and ‐independent parts.
Results
Using the phenomenological method on the classical signal model, the well‐known separation of R*2 into orientation‐dependent and ‐independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed.
Conclusions
Since the proposed second‐order model features orientation‐dependent and ‐independent components at distinct temporal orders, it can be used to remove the orientation dependence of R*2 using only a single GRE measurement
Antireflective nanotextures for monolithic perovskite silicon tandem solar cells
Recently, we studied the effect of hexagonal sinusoidal textures on the reflective properties of perovskite silicon tandem solar cells using the finite element method FEM . We saw that such nanotextures, applied to the perovskite top cell, can strongly increase the current density utilization from 91 for the optimized planar reference to 98 for the best nanotextured device period 500 nm and peak to valley height 500 nm , where 100 refers to the Tiedje Yablonovitch limit. [D. Chen et al., J. Photonics Energy 8, 022601, 2018 , doi 10.1117 1.JPE.8.022601] In this manuscript we elaborate on some numerical details of that work we validate an assumption based on the Tiedje Yablonovitch limit, we present a convergence study for simulations with the finite element method, and we compare different configurations for sinusoidal nanotexture
Superconducting and structural properties of plasma sprayed YBaCuO layers deposited on metallic substrates
The properties of plasma sprayed Y-Ba-Cu-O coatings deposited on metallic substrates are studied. Stainless steel, nickel steels and pure nickel are used as substrate. Y-Ba-Cu-O deposited on stainless steel and nickel steel reacts with the substrate. This interaction can be suppressed by using an yttria-stabilized zirconia (YsZ) diffusion barrier. However, after heat treatment the Y-Ba-Cu-O layers on YsZ show cracks perpendicular to the surface. As a result the critical current density is very low. The best results are obtained for Y-Ba-Cu-O deposited on pure nickel; here no cracks perpendicular to the surface are observed. The critical current increases with the anneal temperature but annealing for longer than 10 h does not seem to improve the superconducting properties any further
- …