1,178 research outputs found
Infrared Spectra of Meteoritic SiC Grains
We present here the first infrared spectra of meteoritic SiC grains. The mid-infrared transmission spectra of meteoritic SiC grains isolated from the Murchison meteorite were measured in the wavelength range 2.5--16.5 micron, in order to make available the optical properties of presolar SiC grains. These grains are most likely stellar condensates with an origin predominately in carbon stars. Measurements were performed on two different extractions of presolar SiC from the Murchison meteorite. The two samples show very different spectral appearance due to different grain size distributions. The spectral feature of the smaller meteoritic SiC grains is a relatively broad absorption band found between the longitudinal and transverse lattice vibration modes around 11.3 micron, supporting the current interpretation about the presence of SiC grains in carbon stars. In contrast to this, the spectral feature of the large (> 5 micron) grains has an extinction minimum around 10 micron. The obtained spectra are compared with commercially available SiC grains and the differences are discussed. This comparison shows that the crystal structure (e.g., beta-SiC versus alpha-SiC) of SiC grains plays a minor role on the optical signature of SiC grains compared to e.g. grain size
Precision Calculations for Future Colliders
I discuss the motivations for, and the status of, precision calculations for
the Large Hadron Collider (LHC) and the planned International Linear Collider
(ILC).Comment: latex, uses ws-ijmpe.cls, 19 pages, 9 figures, 1 table, based on a
talk given at the symposium "50 Years of High Energy Physics at UB", to
appear in International Journal of Modern Physics
Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis
We have conducted an observing campaign with FORS at the ESO-VLT to explore
the kinematical properties of spiral galaxies in distant galaxy clusters. Our
main goal is to analyse transformation- and interaction processes of disk
galaxies within the special environment of clusters as compared to the
hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra
have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation
velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65,
and MS1008-12, for which we presented results including a TF-diagram in Ziegler
et al. 2003, we describe here in detail the observations and data analysis.
Each of them was observed with two setups of the standard FORS MOS-unit.With
typical exposure times of >2 hours we reach an S/N>5 in the emission lines
appropriate for the deduction of the galaxies' internal rotation velocities
from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the
basis of available redshifts as well as from photometric and morphological
information gathered from own observations, archive data, and from the
literature. Emphasis was laid on the definition of suitable setups to avoid the
typical restrictions of the standard MOS unit for this kind of observations. In
total we assembled spectra of 116 objects of which 50 turned out to be cluster
members. Position velocity diagrams, finding charts as well as tables with
photometric, spectral, and structural parameters of individual galaxies are
presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and
Astrophysics. A version with full resolution figures can be downloaded from
http://www.uni-sw.gwdg.de/~vwgroup/publications.htm
The FORS Deep Field: Field selection, photometric observations and photometric catalog
The FORS Deep Field project is a multi-colour, multi-object spectroscopic
investigation of an approx. 7 times 7 region near the south galactic pole based
mostly on observations carried out with the FORS instruments attached to the
VLT telescopes. It includes the QSO Q 0103-260 (z = 3.36). The goal of this
study is to improve our understanding of the formation and evolution of
galaxies in the young Universe. In this paper the field selection, the
photometric observations, and the data reduction are described. The source
detection and photometry of objects in the FORS Deep Field is discussed in
detail. A combined B and I selected UBgRIJKs photometric catalog of 8753
objects in the FDF is presented and its properties are briefly discussed. The
formal 50% completeness limits for point sources, derived from the co-added
images, are 25.64, 27.69, 26.86, 26.68, 26.37, 23.60 and 21.57 in U, B, g, R,
I, J and Ks (Vega-system), respectively. A comparison of the number counts in
the FORS Deep Field to those derived in other deep field surveys shows very
good agreement.Comment: 15 pages, 11 figures (included), accepted for publication in A&
Ab-initio theory of NMR chemical shifts in solids and liquids
We present a theory for the ab-initio computation of NMR chemical shifts
(sigma) in condensed matter systems, using periodic boundary conditions. Our
approach can be applied to periodic systems such as crystals, surfaces, or
polymers and, with a super-cell technique, to non-periodic systems such as
amorphous materials, liquids, or solids with defects. We have computed the
hydrogen sigma for a set of free molecules, for an ionic crystal, LiH, and for
a H-bonded crystal, HF, using density functional theory in the local density
approximation. The results are in excellent agreement with experimental data.Comment: to appear in Physical Review Letter
Energetics and stability of nanostructured amorphous carbon
Monte Carlo simulations, supplemented by ab initio calculations, shed light
into the energetics and thermodynamic stability of nanostructured amorphous
carbon. The interaction of the embedded nanocrystals with the host amorphous
matrix is shown to determine in a large degree the stability and the relative
energy differences among carbon phases. Diamonds are stable structures in
matrices with sp^3 fraction over 60%. Schwarzites are stable in low-coordinated
networks. Other sp^2-bonded structures are metastable.Comment: 11 pages, 7 figure
Spectroscopic factors for bound s-wave states derived from neutron scattering lengths
A simple and model-independent method is described to derive neutron
single-particle spectroscopic factors of bound s-wave states in nuclei from neutron scattering lengths. Spectroscopic factors
for the nuclei ^{13}C, ^{14}C, ^{16}N, ^{17}O, ^{19}O, ^{23}Ne, ^{37}Ar, and
^{41}Ar are compared to results derived from transfer experiments using the
well-known DWBA analysis and to shell model calculations. The scattering length
of ^{14}C is calculated from the ^{15}C_{g.s.} spectroscopic factor.Comment: 9 pages (uses revtex), no figures, accepted for publication in PRC,
uuencoded tex-files and postscript-files available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/Thermal.u
Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq equations
We establish a connection between Optimal Transport Theory and classical
Convection Theory for geophysical flows. Our starting point is the model
designed few years ago by Angenent, Haker and Tannenbaum to solve some Optimal
Transport problems. This model can be seen as a generalization of the
Darcy-Boussinesq equations, which is a degenerate version of the
Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate
different variants of the NSB equations (in particular what we call the
generalized Hydrostatic-Boussinesq equations) to various models involving
Optimal Transport (and the related Monge-Ampere equation. This includes the 2D
semi-geostrophic equations and some fully non-linear versions of the so-called
high-field limit of the Vlasov-Poisson system and of the Keller-Segel for
Chemotaxis. Finally, we show how a ``stringy'' generalization of the AHT model
can be related to the magnetic relaxation model studied by Arnold and Moffatt
to obtain stationary solutions of the Euler equations with prescribed topology
Investigating rare haematological disorders - A celebration of 10 years of the Sherlock Holmes symposia
The Sherlock Holmes symposia have been educating haematologists on the need for prompt recognition, diagnosis and treatment of rare haematological diseases for 10 years. These symposia, which are supported by an unrestricted educational grant from Sanofi Genzyme, encourage haematologists to consider rare disorders in differential diagnoses. Improvement in rare disease awareness is important because diagnostics and the availability of effective therapies have improved considerably, meaning that rare haematological diseases can be accurately diagnosed and successfully managed, particularly if they are identified early. The Sherlock Holmes symposia programme includes real-life interactive clinical cases of rare haematological disorders that require awareness from the physician, to be diagnosed at an early stage. The audience are encouraged to examine each case as if they were detectives, look for clues from the clinical history and presentation, consider the potential causes, assess which tests would be required to make a definitive diagnosis and suggest optimal treatment options. To celebrate the 10-year anniversary of the Sherlock Holmes symposia, this article describes a number of clinical cases that include anaemia, thrombocytopaenia and splenomegaly among the presenting symptoms, to illustrate the importance of rigorous differential diagnosis in the identification of rare haematological disorders
Flavor Physics in an SO(10) Grand Unified Model
In supersymmetric grand-unified models, the lepton mixing matrix can possibly
affect flavor-changing transitions in the quark sector. We present a detailed
analysis of a model proposed by Chang, Masiero and Murayama, in which the
near-maximal atmospheric neutrino mixing angle governs large new b -> s
transitions. Relating the supersymmetric low-energy parameters to seven new
parameters of this SO(10) GUT model, we perform a correlated study of several
flavor-changing neutral current (FCNC) processes. We find the current bound on
B(tau -> mu gamma) more constraining than B(B -> X_s gamma). The LEP limit on
the lightest Higgs boson mass implies an important lower bound on tan beta,
which in turn limits the size of the new FCNC transitions. Remarkably, the
combined analysis does not rule out large effects in B_s-B_s-bar mixing and we
can easily accomodate the large CP phase in the B_s-B_s-bar system which has
recently been inferred from a global analysis of CDF and DO data. The model
predicts a particle spectrum which is different from the popular Constrained
Minimal Supersymmetric Standard Model (CMSSM). B(tau -> mu gamma) enforces
heavy masses, typically above 1 TeV, for the sfermions of the degenerate first
two generations. However, the ratio of the third-generation and
first-generation sfermion masses is smaller than in the CMSSM and a (dominantly
right-handed) stop with mass below 500 GeV is possible.Comment: 44 pages, 5 figures. Footnote and references added, minor changes,
Fig. 2 corrected; journal versio
- …
