382 research outputs found

    Simultaneous optimization of colloidal stability and interfacial charge transfer efficiency in photocatalytic Pt/CdS nanocrystals

    Get PDF
    Colloidal stability and efficient interfacial charge transfer in semiconductor nanocrystals are of great importance for photocatalytic applications in aqueous solution since they provide long-term functionality and high photocatalytic activity, respectively. However, colloidal stability and interfacial charge transfer efficiency are difficult to optimize simultaneously since the ligand layer often acts as both a shell stabilizing the nanocrystals in colloidal suspension and a barrier reducing the efficiency of interfacial charge transfer. Here, we show that, for cysteine-coated, Pt-decorated CdS nanocrystals and Na2SO3 as hole scavenger, triethanolamine (TEOA) replaces the original cysteine ligands in situ and prolongs the highly efficient and steady H2 evolution period by more than a factor of 10. It is shown that Na2SO3 is consumed during H2 generation while TEOA makes no significant contribution to the H2 generation. An apparent quantum yield of 31.5%, a turnover frequency of 0.11 H2/Pt/s, and an interfacial charge transfer rate faster than 0.3 ps were achieved in the TEOA stabilized system. The short length, branched structure and weak binding of TEOA to CdS as well as sufficient free TEOA in the solution are the keys to enhancing colloidal stability and maintaining efficient interfacial charge transfer at the same time. Additionally, TEOA is commercially available and cheap, and we anticipate that this approach can be widely applied in many photocatalytic applications involving colloidal nanocrystals

    Suitability of short-period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz

    Get PDF
    Using three different short-period electromagnetic sensors with resonant frequencies of 1 Hz (Mark L4C-3D), 2 Hz (Mark L-22D), and 4.5 Hz (I/O SM-6), coupled with three digital acquisition system, the PDAS Teledyne Geotech, the REFTEK 72A, and the Earth Data Logger PR6-24 (EDL), the effect of the seismic instruments on the horizontal-to-vertical spectral ratio (H/V) using seismic noise for frequencies less than 1 Hz has been evaluated. For all possible sensors - acquisition system pairs, the background seismic signal and instrumental self-noise power spectral densities have been calculated and compared. The results obtained when coupling the short-period sensors with different acquisition systems show that the performance of the considered instruments at frequencies < 1 Hz strongly depends upon the sensor-acquisition system combination and the gain used, with the best performance obtained for sensors with the lowest resonance frequency. For all acquisition systems, it was possible to retrieve correctly the H/V peak down to 0.1-0.2 Hz by using a high gain and a 1 Hz sensor. In contrast, biased H/V spectral ratios were retrieved when low-gain values were considered. Particular care is required when using 4.5 Hz sensors since they may not even allow the fundamental resonance frequency peak to be reproduce

    Consensus Protein Design without Phylogenetic Bias

    Get PDF
    Consensus design is an appealing strategy for the stabilization of proteins. It exploits amino acid conservation in sets of homologous proteins to identify likely beneficial mutations. Nevertheless, its success depends on the phylogenetic diversity of the sequence set available. Here, we show that randomization of a single protein represents a reliable alternative source of sequence diversity that is essentially free of phylogenetic bias. A small number of functional protein sequences selected from binary-patterned libraries suffice as input for the consensus design of active enzymes that are easier to produce and substantially more stable than individual members of the starting data set. Although catalytic activity correlates less consistently with sequence conservation in these extensively randomized proteins, less extreme mutagenesis strategies might be adopted in practice to augment stability while maintaining function

    All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

    Get PDF
    We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central parameters of laser ion acceleration such as the hot-electron density, the temperature distribution and the conversion efficiency from laser pulse energy into hot electrons become comprehensively accessible with this technique.Deutsche Forschungsgemeinschaft (DFG) (contract number TR18)Germany. Bundesministerium für Bildung und Forschung (contract number 03ZIK445)Germany. Bundesministerium für Bildung und Forschung (contract number 03ZIK052

    Suitability of short-period sensors for retrieving reliable H/V peaks for frequencies less than 1 Hz

    Get PDF
    Using three different short-period electromagnetic sensors with resonant frequencies of 1 Hz (Mark L4C-3D), 2 Hz (Mark L-22D), and 4.5 Hz (I/O SM-6), coupled with three digital acquisition system, the PDAS Teledyne Geotech, the REFTEK 72A, and the Earth Data Logger PR6-24 (EDL), the effect of the seismic instruments on the horizontal-to-vertical spectral ratio (H/V) using seismic noise for frequencies less than 1 Hz has been evaluated. For all possible sensors - acquisition system pairs, the background seismic signal and instrumental self-noise power spectral densities have been calculated and compared. The results obtained when coupling the short-period sensors with different acquisition systems show that the performance of the considered instruments at frequencies < 1 Hz strongly depends upon the sensor-acquisition system combination and the gain used, with the best performance obtained for sensors with the lowest resonance frequency. For all acquisition systems, it was possible to retrieve correctly the H/V peak down to 0.1-0.2 Hz by using a high gain and a 1 Hz sensor. In contrast, biased H/V spectral ratios were retrieved when low-gain values were considered. Particular care is required when using 4.5 Hz sensors since they may not even allow the fundamental resonance frequency peak to be reproduce

    The impact of metallic contacts on propagation losses of an underlying photonic crystal waveguide

    Get PDF
    In view of an electrically pumped photonic crystal-based semiconductor optical amplifier (SOA), we investigate optical mode propagation in 2D PhC waveguides in the presence of metal contacts for carrier injection. Our photonic crystal (PhC) devices are manufactured in the InP/InGaAsP material system. For the loss measurements, we have fabricated contact strips as narrow as 300nm with a sub-50nm placing accuracy on top of W3 waveguides. We study the influence of their position and width on optical power transmission through passive waveguides with respect to viability for future active devices. Our experimental results are complemented by numerical studies (FDTD, plane-wave expansion method)
    corecore