2 research outputs found

    Polyethylene terephthalate (PET) recycling via steam gasification – The effect of operating conditions on gas and tar composition

    Get PDF
    Polyethylene terephthalate (PET) is widely used in textile fiber, film, and bottles. Although PET bottle recycling has made great progress, other PET waste is still not recycled. Gasification could be an option for recycling or recovering energy and chemicals from PET waste. However, single stream PET steam gasification in fluidized bed is seldom investigated. In this paper, individual PET gasification experiments were then conducted in a lab-scale bubbling fluidized bed to investigate how gasifying agents, temperature, residence time and steam/fuel ratio affect the product composition. The results showed that, in steam gasification, steam was the main source of H , but increasing the steam to fuel ratio cannot increase the H yield remarkably. Temperature was an essential parameter. Increasing temperature from 750 to 800 \ub0C improved the yields of H (+87.7%), the dominant gas product CO (+40.3%), and biphenyl (+123%) notably. In contrast to other common thermoplastics, high concentrations of CO and biphenyl are the prominent characteristics of PET steam gasification. In addition, plastic steam gasification optimizations for syngas applications were discussed

    Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

    Get PDF
    Humans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance. We report evidence of substantial shared genetic influences across risk tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is genetically correlated (|r^g| ~ 0.25 to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near SNPs associated with general risk tolerance are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes previously hypothesized to relate to risk tolerance
    corecore