6,096 research outputs found

    LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

    Full text link
    The new challenges posed by the need of finding strong rare-earth free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated in band structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement and the MAE of YCo5.Comment: 7 pages, 4 figures, published versio

    Improving teleportation of continuous variables by local operations

    Full text link
    We study a continuous-variable (CV) teleportation protocol based on a shared entangled state produced by the quantum-nondemolition (QND) interaction of two vacuum states. The scheme utilizes the QND interaction or an unbalanced beam splitter in the Bell measurement. It is shown that in the non-unity gain regime the signal transfer coefficient can be enhanced while the conditional variance product remains preserved by applying appropriate local squeezing operation on sender's part of the shared entangled state. In the unity gain regime it is demonstrated that the fidelity of teleportation can be increased with the help of the local squeezing operations on parts of the shared entangled state that convert effectively our scheme to the standard CV teleportation scheme. Further, it is proved analytically that such a choice of the local symplectic operations minimizes the noise by which the mean number of photons in the input state is increased during the teleportation. Finally, our analysis reveals that the local symplectic operation on sender's side can be integrated into the Bell measurement if the interaction constant of the interaction in the Bell measurement can be adjusted properly.Comment: 10 pages, 1 figure, discussion of the non-unity gain teleportation is adde

    Intertwined Orders in Heavy-Fermion Superconductor CeCoIn5_5

    Full text link
    The appearance of spin-density-wave (SDW) magnetic order in the low-temperature and high-field corner of the superconducting phase diagram of CeCoIn5_5 is unique among unconventional superconductors. The nature of this magnetic QQ phase is a matter of current debate. Here, we present the thermal conductivity of CeCoIn5_5 in a rotating magnetic field, which reveals the presence of an additional order inside the QQ phase that is intimately intertwined with the superconducting dd-wave and SDW orders. A discontinuous change of the thermal conductivity within the QQ phase, when the magnetic field is rotated about antinodes of the superconducting dd-wave order parameter, demands that the additional order must change abruptly together with the recently observed switching of the SDW. A combination of interactions, where spin-orbit coupling orients the SDW, which then selects the secondary pp-wave pair-density-wave component (with an average amplitude of 20\% of the primary dd-wave order parameter), accounts for the observed behavior

    Field induced density wave in the heavy fermion compound CeRhIn5

    Full text link
    Metals containing Ce often show strong electron correlations due to the proximity of the 4f state to the Fermi energy, leading to strong coupling with the conduction electrons. This coupling typically induces a variety of competing ground states, including heavy-fermion metals, magnetism and unconventional superconductivity. The d-wave superconductivity in CeTMIn5 (TM=Co, Rh, Ir) has attracted significant interest due to its qualitative similarity to the cuprate high-Tc superconductors. Here, we show evidence for a field induced phase-transition to a state akin to a density-wave (DW) in the heavy fermion CeRhIn5, existing in proximity to its unconventional superconductivity. The DW state is signaled by a hysteretic anomaly in the in-plane resistivity accompanied by the appearance of non-linear electrical transport at high magnetic fields (>27T), which are the distinctive characteristics of density-wave states. The unusually large hysteresis enables us to directly investigate the Fermi surface of a supercooled electronic system and to clearly associate a Fermi surface reconstruction with the transition. Key to our observation is the fabrication of single crystal microstructures, which are found to be highly sensitive to "subtle" phase transitions involving only small portions of the Fermi surface. Such subtle order might be a common feature among correlated electron systems, and its clear observation adds a new perspective on the similarly subtle CDW state in the cuprates.Comment: Accepted in Nature Communication

    Purification and detection of entangled coherent states

    Full text link
    In [J. C. Howell and J. A. Yeazell, Phys. Rev. A 62, 012102 (2000)], a proposal is made to generate entangled macroscopically distinguishable states of two spatially separated traveling optical modes. We model the decoherence due to light scattering during the propagation along an optical transmission line and propose a setup allowing an entanglement purification from a number of preparations which are partially decohered due to transmission. A purification is achieved even without any manual intervention. We consider a nondemolition configuration to measure the purity of the state as contrast of interference fringes in a double-slit setup. Regarding the entangled coherent states as a state of a bipartite quantum system, a close relationship between purity and entanglement of formation can be obtained. In this way, the contrast of interference fringes provides a direct means to measure entanglement.Comment: 9 pages, 6 figures, using Revtex

    Methodology of the biological risk classification of animal pathogens in Belgium

    Get PDF
    The biological hazards posed by micro-organisms have lead to their categorisation into risk groups and the elaboration of classification lists. Current classification systems rely on criteria defined by the World Health Organization, which cover the severity of the disease the micro-organism might cause, its ability to spread and the availability of prophylaxis or efficient treatment. Animal pathogens are classified according to the definitions of the World Organization of Animal Health, which also consider economic aspects of disease. In Europe, classification is often directly linked to containment measures. The Belgian classification system however, only considers the inherent characteristics of the micro-organism, not its use, making the risk classification independent of containment measures. A common classification list for human and animal pathogens has been developed in Belgium using as comprehensive an approach as possible. Evolution of scientific knowledge will demand regular updating of classification lists. This paper describes the Belgian risk classification system and the methodology that was used for its peer-reviewed revision (with a focus on animal pathogens)

    Large magnetic penetration depth and thermal fluctuations in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal

    Get PDF
    We have measured the temperature dependence of the absolute value of the magnetic penetration depth λ(T)\lambda(T) in a Ca10_{10}(Pt3_{3}As8_{8})[(Fe1−x_{1-x}Ptx_{x})2_{2}As2_{2}]5_{5} (x=0.097) single crystal using a low-temperature magnetic force microscope (MFM). We obtain λab\lambda_{ab}(0)≈\approx1000 nm via extrapolating the data to T=0T = 0. This large λ\lambda and pronounced anisotropy in this system are responsible for large thermal fluctuations and the presence of a liquid vortex phase in this low-temperature superconductor with critical temperature of 11 K, consistent with the interpretation of the electrical transport data. The superconducting parameters obtained from λ\lambda and coherence length ξ\xi place this compound in the extreme type \MakeUppercase{\romannumeral 2} regime. Meissner responses (via MFM) at different locations across the sample are similar to each other, indicating good homogeneity of the superconducting state on a sub-micron scale
    • …
    corecore