109 research outputs found

    Post-Translational Modifications of Kaposiā€™s Sarcoma-Associated Herpesvirus Regulatory Proteins ā€“ SUMO and KSHV

    Get PDF
    KSHV latency can be envisioned as an outcome that is balanced between factors that promote viral gene expression and lytic replication against those that facilitate gene silencing and establish or maintain latency. A large body of work has focused on the activities of the key viral regulatory proteins involved in KSHV latent or lytic states. Moreover, recent studies have also begun to document the importance of epigenetic landscape evolution of the KSHV viral genome during latency and reactivation. However, one area of KSHV molecular virology that remains largely unanswered is the precise role of post-translational modifications on the activities of viral factors that function during latency and reactivation. In this review, we will summarize the post-translational modifications associated with three viral factors whose activities contribute to the viral state. The viral proteins discussed are the two major KSHV encoded transcription factors, K-Rta (KSHV replication and transcriptional activator) and K-bZIP (KSHV basic leucine zipper) and the viral latency-associated nuclear antigen (LANA). A special emphasis will be placed on the role of the sumoylation pathway in the modulation of the KSHV lifecycle. Newly uncovered small ubiquitin-like modifier (SUMO)-associated properties of LANA and K-Rta will also be presented, namely LANA histone targeting SUMO E3 ligase activity and K-Rta SUMO-targeted ubiquitin ligase function

    Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection.

    Get PDF
    The establishment of latency is an essential step for the life-long persistent infection and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). While the KSHV genome is chromatin-free in the virions, the viral DNA in latently infected cells has a chromatin structure with activating and repressive histone modifications that promote latent gene expression but suppress lytic gene expression. Here, we report a comprehensive epigenetic study of the recruitment of chromatin regulatory factors onto the KSHV genome during the pre-latency phase of KSHV infection. This demonstrates that the KSHV genome undergoes a biphasic chromatinization following de novo infection. Initially, a transcriptionally active chromatin (euchromatin), characterized by high levels of the H3K4me3 and acetylated H3K27 (H3K27ac) activating histone marks, was deposited on the viral episome and accompanied by the transient induction of a limited number of lytic genes. Interestingly, temporary expression of the RTA protein facilitated the increase of H3K4me3 and H3K27ac occupancy on the KSHV episome during de novo infection. Between 24-72 hours post-infection, as the levels of these activating histone marks declined on the KSHV genome, the levels of the repressive H3K27me3 and H2AK119ub histone marks increased concomitantly with the decline of lytic gene expression. Importantly, this transition to heterochromatin was dependent on both Polycomb Repressive Complex 1 and 2. In contrast, upon infection of human gingiva-derived epithelial cells, the KSHV genome underwent a transcription-active euchromatinization, resulting in efficient lytic gene expression. Our data demonstrate that the KSHV genome undergoes a temporally-ordered biphasic euchromatin-to-heterochromatin transition in endothelial cells, leading to latent infection, whereas KSHV preferentially adopts a transcriptionally active euchromatin in oral epithelial cells, resulting in lytic gene expression. Our results suggest that the differential epigenetic modification of the KSHV genome in distinct cell types is a potential determining factor for latent infection versus lytic replication of KSHV

    A viral kinase mimics S6 kinase to enhance cell proliferation

    Get PDF
    Viruses usurp the host cell machinery to replicate, disseminate, and propagate themselves. Kaposiā€™s sarcoma-associated herpesvirus (KSHV) encodes a viral protein kinase (vPK) also known as ORF36. Using in silico modeling and biochemistry, we report that vPK/ORF36 displays limited homology to cellular S6 kinase B1 (S6KB1). Both kinases share overlapping substrates and can phosphorylate S6. However, unlike S6KB1, vPK augments S6 phosphorylation under conditions where mammalian target of rapamycin (mTOR) is inhibited. vPK modulates cellular proliferation and protein synthesis, augments anchorage independence, and enhances angiogenesis. Depletion of vPK/ORF36 during lytic replication inhibits the production of infectious virions, thereby underscoring the importance of this kinase during the KSHV life cycle. Our collective observations suggest that vPK may function as a constitutively active mimic of S6KB1
    • ā€¦
    corecore