18 research outputs found

    Deproteinated Potato Wastewater as a Sustainable Nitrogen Source in Trichosporon domesticum Yeast Lipids Biosynthesis—a Concept of Valorization of Wastewater from Starch Industry

    Get PDF
    This study determines the ability of an isolated Trichosporon domesticum yeast strain to accumulate intracellular lipids in media with deproteinated potato wastewater (DPW) containing various carbon sources. The yeast strain was isolated from kefir and identified by internal transcribed spacer (ITS) region sequence analysis. The sequence was deposited in GenBank under accession number MH094668, and the strain was deposited in Polish Collection of Microorganisms as T. domesticum PCM 2960. DPW is an inexpensive and valuable source of nitrogen, potassium, phosphorus, and other elements in yeast cultures. DPW supplemented with glucose medium was most effective at stimulating lipid biosynthesis by T. domesticum PCM 2960 and bioreactor incubation resulted in a final lipid yield of 4.8 g L−1. The lipids of the T. domesticum PCM 2960 biomass were characterized by high contents of linoleic acid (Δ9,12C18:2), oleic acid (Δ9C18:1), palmitic acid (C16:0), and α-linolenic acid (Δ9,12,15C18:3). Theoretical calculations for biodiesel properties showed that the methylated esters of lipids from T. domesticum PCM 2960 biomass cannot be used as a biodiesel in diesel engines. Additionally, the ability to produce biofilm as one criterion for pathogenicity was tested. The ability for biofilm formation by the isolated strain was low. This study provides a promising solution for the more economical production of microbial lipids with DPW

    Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract

    Get PDF
    Background: Depletion of petroleum resources has enforced the search for alternative sources of renewable energy. Introduction of biofuels into the market was expected to become a solution to this disadvantageous situation. Attempts to cover fuel demand have, however, caused another severe problem\u2014the waste glycerol generated during biodiesel production at a concentration of approximately 10% w/w. This, in turn, prompted a global search for effective methods of valorization of the waste fraction of glycerol. Results: Utilization of the waste fraction at 48 h with an initial glycerol concentration of 30 g\ub7L-1 and proceeding with 62% efficiency enabled the production of 9 g\ub7L-1 dihydroxyacetone at 50% substrate consumption. The re-use of the immobilized biocatalyst resulted in a similar concentration of dihydroxyacetone (8.7 g\ub7L-1) in two-fold shorter time, with an efficiency of 85% and lower substrate consumption (35%). Conclusions: The method proposed in this work is based on the conversion of waste glycerol to dihydroxyacetone in a reaction catalyzed by immobilized Gluconobacter oxydans cell extract with glycerol dehydrogenase activity, and it could be an effective way to convert waste glycerol into a valuable product

    The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources

    Get PDF
    Background: The exopolysaccharides (EPS) produced by yeast exhibit physico-chemical and rheological properties, which are useful in the production of food and in the cosmetic and pharmaceutical industries as well. The effect was investigated of selected carbon sources on the biosynthesis of EPS by Candida famata and Candida guilliermondii strains originally isolated from kefirs. Results: The biomass yields were dependent on carbon source (sucrose, maltose, lactose, glycerol, sorbitol) and ranged from 4.13 to 7.15 g/L. The highest biomass yield was reported for C. guilliermondii after cultivation on maltose. The maximum specific productivity of EPS during cultivation on maltose was 0.505 and 0.321 for C. guilliermondii and C. famata, respectively. The highest EPS yield was found for C. guilliermondii strain. The EPS produced under these conditions contained 65.4% and 61.5% carbohydrates, respectively. The specific growth rate (\u3bc) of C. famata in medium containing EPS as a sole carbon source was 0.0068 h-1 and 0.0138 h-1 for C. guilliermondii strain. Conclusions: Themost preferred carbon source in the synthesis of EPS for both Candida strains was maltose, wherein C. guilliermondii strain showed the higher yield of EPS biosynthesis. The carbon source affected the chemical composition of the resulting EPS and the contribution of carbohydrate in the precipitated preparation of polymers was higher during supplementation of maltose as compared to sucrose. It was also found that the EPS can be a source of carbon for the producing strains

    Effect of initial pH of medium with potato wastewater and glycerol on protein, lipid and carotenoid biosynthesis by Rhodotorula glutinis

    Get PDF
    Background: Rhodotorula glutinis is capable of synthesizing numerous valuable metabolites with extensive potential industrial usage. This paper reports the effect of initial culture medium pH on growth and protein, lipid, and carotenoid biosynthesis by R. glutinis. Results: The highest biomass yield was obtained in media with pH 4.0\u20137.0, and the value after 72 h was 17.2\u201319.4 gd.w./L. An initial pH of the medium in the range of 4.0\u20137.0 has no significant effect on the protein (38.5\u201341.3 g/100 gd.w.), lipid (10.2\u201312.7 g/100 gd.w.), or carotenoid (191.7\u2013202.9 \u3bcg/gd.w.) content in the biomass or on the profile of synthesized fatty acids and carotenoids. The whole pool of fatty acids was dominated by oleic (48.1\u201353.4%), linoleic (21.4\u201325.1%), and palmitic acids (13.0\u201315.8%). In these conditions, the yeast mainly synthesized torulene (43.5\u201347.7%) and \u3b2-carotene (34.7\u201338.6%), whereas the contribution of torularhodin was only 12.1\u201316.8%. Cultivation in medium with initial pH 3.0 resulted in a reduction in growth (13.0 gd.w./L) and total carotenoid (115.8 \u3bcg/gd.w.), linoleic acid (11.5%), and torularhodin (4.5%) biosynthesis. Conclusion: The different values of initial pH of the culture medium with glycerol and deproteinized potato wastewater had a significant effect on the growth and protein, lipid, and carotenoid biosynthesis by R. glutinis

    Use of Phage Cocktail for Improving the Overall Microbiological Quality of Sprouts—Two Methods of Application

    No full text
    Background: the aim of this study was to improve the overall microbiological quality of five different sprouts (alfalfa, kale, lentil, sunflower, radish) using newly isolated bacteriophages. Method: in this study we had isolated from sewage 18 bacteriophages targeting bacteria dominant in sprouts. Five selected bacteriophage strains were photographed using a transmission electron microscope (TEM), and we analyzed the rate of attachment, resistance to chloroform, the burst size, and the latency period. Two methods of application of the phage cocktail were investigated: spraying, and an absorption pad. Results: the spraying method was significantly more efficient, and the maximum reduction effect after 48 h of incubation was 1.5 log CFU/g. Using pads soaked with phage lysate reduced the total number of bacteria to only about 0.27–0.79 log CFU/g. Conclusion: the reduction of bacteria levels in sprouts depended on the method of phage application. The blind strategy for searching phage targeting bacteria dominant in sprouts can be useful and economically beneficial as a starting point for further investigation in phage cocktail application for improving the overall microbiological quality of food. The main result of our research is to improve the overall quality of kale and radish sprouts by spraying them with a phage cocktail

    Biodegradation of deproteinized potato wastewater and glycerol during cultivation of Rhodotorula glutinis yeast

    Get PDF
    Background: Deproteinized potato wastewater and glycerol are two by-products which are difficult to dispose. The objective of this study was to determine the ability of Rhodotorula glutinis to use glycerol and nitrogen compounds present in deproteinized potato wastewater and to evaluate the ability of simultaneous biodegradation of potato wastewater and glycerol via microbiological methods. Results: It has been found that R. glutinis used glycerol and potato wastewater as a source of carbon and nitrogen, respectively. The highest degree of glycerol content (70.6%) reduction was found after cultivation of the investigated strain using a medium with 5% glycerol. In this medium, a significant reduction in the total protein content, estimated at 61%, was observed. The process of 72 h cultivation of yeast in a medium containing potato wastewater and 5% glycerol reduced the chemical oxygen demand (COD) more than 77%. Supplementation of media with high doses of glycerol (i.e. 20 and 25%) led to decreased metabolic activity in the yeast strain tested. Conclusion: It has been found that there is a possibility of simultaneous biodegradation of potato wastewater and glycerol during the cultivation of R. glutinis

    Sweet Basil (<i>Ocimum basilicum</i> L.) Productivity and Raw Material Quality from Organic Cultivation

    No full text
    Sweet basil is one of the most important culinary herbs. Currently, its production is carried out mainly in accordance with conventional agriculture. However, its cultivation in organic systems seems to be better adjusted to consumer demands connected with the lack of pesticide residues in foods and their safety. In the present study, two methods of basil cultivation in organic farming system were applied, i.e., in the open air and under foil tunnels. During the experiment, in central European climatic conditions, it was possible to obtain four successive cuts of herb. The herb was subjected to chemical analysis, including determination of the content of essential oil, phenolic compounds, and chlorophylls. Gas chromatography coupled with mass spectrometry (GC&#8722;MS) and flame ionization detector (GC-FID) analysis of the essential oil was performed, whereas the fresh herb was subjected to sensory analysis. The cumulative mass of fresh herb was distinctly higher in the cultivation under foil tunnels (44.7 kg∙10 m&#8722;2) in comparison to the open field (24.7 kg∙10 m&#8722;2). The content of essential oil, flavonoids, and phenolic acids was also higher in the raw material collected from plants grown under foil tunnels (0.81, 0.36, and 0.78 g&#183;100g&#8722;1 DW, respectively) than from the open field (0.48, 0.29, and 0.59g&#183;100g&#8722;1 DW, respectively). In turn, the dominant compound of the essential oil, i.e., linalool, was present in higher amounts in the essential oil obtained from plants cultivated in the open field. The sensory and microbiological quality of herb was comparable for both methods of cultivation. The obtained results indicate that, in central European climatic conditions, it is possible to obtain good-quality yield of basil herb. However, for its better productivity, it seems that cultivation under foil tunnels is preferable

    <i>Candida utilis</i> ATCC 9950 Cell Walls and <i>β(1,3)/(1,6)</i>-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap

    No full text
    Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and &#946;(1,3)/(1,6)-glucan (&#946;-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and &#946;-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 &#181;g/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified &#946;-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption

    Torulene and torularhodin: “new” fungal carotenoids for industry?

    No full text
    Abstract Torulene and torularhodin represent the group of carotenoids and are synthesized by yeasts and fungi. The most important producers of these two compounds include yeasts of Rhodotorula and Sporobolomyces genera. The first reports confirming the presence of torulene and torularhodin in the cells of microorganisms date to the 1930s and 1940s; however, only in the past few years, the number of works describing the properties of these compounds increased. These compounds have strong anti-oxidative and anti-microbial properties, and thus may be successfully used as food, feedstock, and cosmetics additives. In addition, tests performed on rats and mice showed that both torulene and torularhodin have anti-cancerous properties. In order to commercialize the production of these two carotenoids, it is necessary to obtain highly efficient yeast strains, for example, via mutagenization and optimization of cultivation conditions. Further studies on the activity of torulene and torularhodin on the human body are also needed

    The exopolysaccharides biosynthesis by Candida yeast depends on carbon sources

    Get PDF
    Background: The exopolysaccharides (EPS) produced by yeast exhibit physico-chemical and rheological properties, which are useful in the production of food and in the cosmetic and pharmaceutical industries as well. The effect was investigated of selected carbon sources on the biosynthesis of EPS by Candida famata and Candida guilliermondii strains originally isolated from kefirs. Results: The biomass yields were dependent on carbon source (sucrose, maltose, lactose, glycerol, sorbitol) and ranged from 4.13 to 7.15 g/L. The highest biomass yield was reported for C. guilliermondii after cultivation on maltose. The maximum specific productivity of EPS during cultivation on maltose was 0.505 and 0.321 for C. guilliermondii and C. famata, respectively. The highest EPS yield was found for C. guilliermondii strain. The EPS produced under these conditions contained 65.4% and 61.5% carbohydrates, respectively. The specific growth rate (μ) of C. famata in medium containing EPS as a sole carbon source was 0.0068 h-1 and 0.0138 h-1 for C. guilliermondii strain. Conclusions: The most preferred carbon source in the synthesis of EPS for both Candida strains was maltose, wherein C. guilliermondii strain showed the higher yield of EPS biosynthesis. The carbon source affected the chemical composition of the resulting EPS and the contribution of carbohydrate in the precipitated preparation of polymers was higher during supplementation of maltose as compared to sucrose. It was also found that the EPS can be a source of carbon for the producing strains
    corecore