54 research outputs found
Comparative analysis of glutaredoxin domains from bacterial opportunistic pathogens
NMR structures of the glutaredoxin (GLXR) domains from Br. melitensis and Ba. henselae have been determined as part of the SSGCID initiative. Comparison of the domains with known structures reveals overall structural similarity between these proteins and previously determined E. coli GLXR structures, with minor changes associated with the position of helix 1 and with regions that diverge from similar structures found in the closest related human homolog
Molecular Evolution of Ultraspiracle Protein (USP/RXR) in Insects
Ultraspiracle protein/retinoid X receptor (USP/RXR) is a nuclear receptor and transcription factor which is an essential component of a heterodimeric receptor complex with the ecdysone receptor (EcR). In insects this complex binds ecdysteroids and plays an important role in the regulation of growth, development, metamorphosis and reproduction. In some holometabolous insects, including Lepidoptera and Diptera, USP/RXR is thought to have experienced several important shifts in function. These include the acquisition of novel ligand-binding properties and an expanded dimerization interface with EcR. In light of these recent hypotheses, we implemented codon-based likelihood methods to investigate if the proposed shifts in function are reflected in changes in site-specific evolutionary rates across functional and structural motifs in insect USP/RXR sequences, and if there is any evidence for positive selection at functionally important sites. Our results reveal evidence of positive selection acting on sites within the loop connecting helices H1 and H3, the ligand-binding pocket, and the dimer interface in the holometabolous lineage leading to the Lepidoptera/Diptera/Trichoptera. Similar analyses conducted using EcR sequences did not indicate positive selection. However, analyses allowing for variation across sites demonstrated elevated non-synonymous/synonymous rate ratios (dN/dS), suggesting relaxed constraint, within the dimerization interface of both USP/RXR and EcR as well as within the coactivator binding groove and helix H12 of USP/RXR. Since the above methods are based on the assumption that dS is constant among sites, we also used more recent models which relax this assumption and obtained results consistent with traditional random-sites models. Overall our findings support the evolution of novel function in USP/RXR of more derived holometabolous insects, and are consistent with shifts in structure and function which may have increased USP/RXR reliance on EcR for cofactor recruitment. Moreover, these findings raise important questions regarding hypotheses which suggest the independent activation of USP/RXR by its own ligand
The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility
<p>Abstract</p> <p>Background</p> <p>Our objective was to study the pattern of olfactory receptor expression within the dorsal and ventral regions of the mouse olfactory epithelium. We hypothesized that olfactory receptors were distributed based on the chemical properties of their ligands: e.g. receptors for polar, hydrophilic and weakly volatile odorants would be present in the dorsal region of olfactory epithelium; while receptors for non-polar, more volatile odorants would be distributed to the ventral region. To test our hypothesis, we used micro-transplantation of cilia-enriched plasma membranes derived from dorsal or ventral regions of the olfactory epithelium into Xenopus oocytes for electrophysiological characterization against a panel of 100 odorants.</p> <p>Findings</p> <p>Odorants detected by ORs from the dorsal and ventral regions showed overlap in volatility and water solubility. We did not find evidence for a correlation between the solubility and volatility of odorants and the functional expression of olfactory receptors in the dorsal or ventral region of the olfactory epithelia.</p> <p>Conclusions</p> <p>No simple clustering or relationship between chemical properties of odorants could be associated with the different regions of the olfactory epithelium. These results suggest that the location of ORs within the epithelium is not organized based on the physico-chemical properties of their ligands.</p
Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes
The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system
Effects of Hormone Agonists on Sf9 Cells, Proliferation and Cell Cycle Arrest
Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells
Negative Regulation of Endogenous Stem Cells in Sensory Neuroepithelia: Implications for Neurotherapeutics
Stem cell therapies to treat central nervous system (CNS) injuries and diseases face many obstacles, one of which is the fact that the adult CNS often presents an environment hostile to the development and differentiation of neural stem and progenitor cells. Close examination of two regions of the nervous system – the olfactory epithelium (OE), which regenerates, and the neural retina, which does not – have helped identify endogenous signals, made by differentiated neurons, which act to inhibit neurogenesis by stem/progenitor cells within these tissues. In this chapter, we provide background information on these systems and their neurogenic signaling systems, with the goal of providing insight into how manipulation of endogenous signaling molecules may enhance the efficacy of stem cell neurotherapeutics
Investigating temporal field sampling strategies for site-specific calibration of three soil moisture–neutron intensity parameterisation methods
The Cosmic-Ray Neutron Sensor (CRNS) can provide soil moisture information at scales relevant to hydrometeorological modelling applications. Site-specific calibration is needed to translate CRNS neutron intensities into sensor footprint average soil moisture contents. We investigated temporal sampling strategies for calibration of three CRNS parameterisations (modified N0, HMF, and COSMIC) by assessing the effects of the number of sampling days and soil wetness conditions on the performance of the calibration results while investigating actual neutron intensity measurements, for three sites with distinct climate and land use: a semi-arid site, a temperate grassland, and a temperate forest. When calibrated with 1 year of data, both COSMIC and the modified N0 method performed better than HMF. The performance of COSMIC was remarkably good at the semi-arid site in the USA, while the N0mod performed best at the two temperate sites in Germany. The successful performance of COSMIC at all three sites can be attributed to the benefits of explicitly resolving individual soil layers (which is not accounted for in the other two parameterisations). To better calibrate these parameterisations, we recommend in situ soil sampled to be collected on more than a single day. However, little improvement is observed for sampling on more than 6 days. At the semi-arid site, the N0mod method was calibrated better under site-specific average wetness conditions, whereas HMF and COSMIC were calibrated better under drier conditions. Average soil wetness condition gave better calibration results at the two humid sites. The calibration results for the HMF method were better when calibrated with combinations of days with similar soil wetness conditions, opposed to N0mod and COSMIC, which profited from using days with distinct wetness conditions. Errors in actual neutron intensities were translated to average errors specifically to each site. At the semi-arid site, these errors were below the typical measurement uncertainties from in situ point-scale sensors and satellite remote sensing products. Nevertheless, at the two humid sites, reduction in uncertainty with increasing sampling days only reached typical errors associated with satellite remote sensing products. The outcomes of this study can be used by researchers as a CRNS calibration strategy guideline
- …