112 research outputs found
AKT2/3 Subunits Render Guard Cell K+ Channels Ca2+ Sensitive
Inward-rectifying K+ channels serve as a major pathway for Ca2+-sensitive K+ influx into guard cells. Arabidopsis thaliana guard cell inward-rectifying K+ channels are assembled from multiple K+ channel subunits. Following the recent isolation and characterization of an akt2/3-1 knockout mutant, we examined whether the AKT2/3 subunit carries the Ca2+ sensitivity of the guard cell inward rectifier. Quantification of RT-PCR products showed that despite the absence of AKT2 transcripts in guard cells of the knockout plant, expression levels of the other K+ channel subunits (KAT1, KAT2, AKT1, and AtKC1) remained largely unaffected. Patch-clamp experiments with guard cell protoplasts from wild type and akt2/3-1 mutant, however, revealed pronounced differences in Ca2+ sensitivity of the K+ inward rectifier. Wild-type channels were blocked by extracellular Ca2+ in a concentration- and voltage-dependent manner. Akt2/3-1 mutants lacked the voltage-dependent Ca2+ block, characteristic for the K+ inward rectifier. To confirm the akt2/3-1 phenotype, two independent knockout mutants, akt2-1 and akt2::En-1 were tested, demonstrating that the loss of AKT2/3 indeed affects the Ca2+ dependence of guard cell inward rectifier. In contrast to AKT2 knockout plants, AKT1, AtKC1, and KAT1 loss-of-function mutants retained Ca2+ block of the guard cell inward rectifier. When expressed in HEK293 cells, AKT2 channel displayed a pronounced susceptibility toward extracellular Ca2+, while the dominant guard cell K+ channel KAT2 was Ca2+ insensitive. Thus, we conclude that the AKT2/3 subunit constitutes the Ca2+ sensitivity of the guard cell K+ uptake channel
KDC1, a Novel Carrot Root Hair K+Channel CLONING, CHARACTERIZATION, AND EXPRESSION IN MAMMALIAN CELLS
Potassium is an essential nutrient which plays an important role in many aspects of plant growth and development. Plants have developed a number of highly specific mechanisms to take up potassium from the soil; these include the expression of K+ transporters and potassium channels in root cells. Despite the fact that root epidermal and hair cells are in direct contact with the soil, the role of these tissues in K+uptake is not well understood. Here we report the molecular cloning and functional characterization of a novel potassium channel KDC1 which forms part of a new subfamily of plant Kinchannels. Kdc1 was isolated from carrot root RNA andin situ hybridization experiments show Kdc1 to be highly expressed in root hair cells. Expressing the KDC1 protein in Chinese hamster ovary cells identified it as a voltage and pH-dependent inwardly rectifying potassium channel. An electrophysiological analysis of carrot root hair protoplasts confirmed the biophysical properties of the Kdc1 gene product (KDC1) in the heterologous expression system. KDC1 thus represents a major K+ uptake channel in carrot root hair cells
Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ
Ca2+, Mg2+, and K+ activities in red beet (Beta vulgaris L.) vacuoles were evaluated using conventional ion-selective microelectrodes and, in the case of Ca2+, by non-invasive ion flux measurements (MIFE) as well. The mean vacuolar Ca2+ activity was ∼0.2 mM. Modulation of the slow vacuolar (SV) channel voltage dependence by Ca2+ in the absence and presence of other cations at their physiological concentrations was studied by patch-clamp in excised tonoplast patches. Lowering pH at the vacuolar side from 7.5 to 5.5 (at zero vacuolar Ca2+) did not affect the channel voltage dependence, but abolished sensitivity to luminal Ca2+ within a physiological range of concentrations (0.1–1.0 mM). Aggregation of the physiological vacuolar Na+ (60 mM) and Mg2+ (8 mM) concentrations also results in the SV channel becoming almost insensitive to vacuolar Ca2+ variation in a range from nanomoles to 0.1 mM. At physiological cation concentrations at the vacuolar side, cytosolic Ca2+ activates the SV channel in a voltage-independent manner with Kd=0.7–1.5 μM. Comparison of the vacuolar Ca2+ fluxes measured by both the MIFE technique and from estimating the SV channel activity in attached patches, suggests that, at resting membrane potentials, even at elevated (20 μM) cytosolic Ca2+, only 0.5% of SV channels are open. This mediates a Ca2+ release of only a few pA per vacuole (∼0.1 pA per single SV channel). Overall, our data suggest that the release of Ca2+ through SV channels makes little contribution to a global cytosolic Ca2+ signal
PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up-regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro-grafting a pho1 shoot scion onto wild-type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild-type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re-established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA
Scoping literature review of evidence on cost and effectiveness outcomes of non-medical prescribing by health professionals
Protocol for a scoping literature review study to identify and map the evidence on cost and effectiveness outcomes of non-medical prescribing by health professional
- …