19 research outputs found

    Sequencing-based breast cancer diagnostics as an alternative to routine biomarkers

    Get PDF
    Sequencing-based breast cancer diagnostics have the potential to replace routine biomarkers and provide molecular characterization that enable personalized precision medicine. Here we investigate the concordance between sequencing-based and routine diagnostic biomarkers and to what extent tumor sequencing contributes clinically actionable information. We applied DNA- and RNA-sequencing to characterize tumors from 307 breast cancer patients with replication in up to 739 patients. We developed models to predict status of routine biomarkers (ER, HER2,Ki-67, histological grade) from sequencing data. Non-routine biomarkers, including mutations in BRCA1, BRCA2 and ERBB2(HER2), and additional clinically actionable somatic alterations were also investigated. Concordance with routine diagnostic biomarkers was high for ER status (AUC = 0.95;AUC(replication) = 0.97) and HER2 status (AUC = 0.97;AUC(replication) = 0.92). The transcriptomic grade model enabled classification of histological grade 1 and histological grade 3 tumors with high accuracy (AUC = 0.98;AUC(replication) = 0.94). Clinically actionable mutations in BRCA1, BRCA2 and ERBB2(HER2) were detected in 5.5% of patients, while 53% had genomic alterations matching ongoing or concluded breast cancer studies. Sequencing-based molecular profiling can be applied as an alternative to histopathology to determine ER and HER2 status, in addition to providing improved tumor grading and clinically actionable mutations and molecular subtypes. Our results suggest that sequencing-based breast cancer diagnostics in a near future can replace routine biomarkersNonePublishe

    Genome-Wide Analyses for Osteosarcoma in Leonberger Dogs Reveal the CDKN2A/B Gene Locus as a Major Risk Locus

    Get PDF
    Dogs represent a unique spontaneous cancer model. Osteosarcoma (OSA) is the most common primary bone tumor in dogs (OMIA 001441-9615), and strongly resembles human forms of OSA. Several large- to giant-sized dog breeds, including the Leonberger, have a greatly increased risk of developing OSA. We performed genome-wide association analysis with high-density imputed SNP genotype data from 273 Leonberger cases with a median age of 8.1 [3.1–13.5] years and 365 controls older than eight years. This analysis revealed significant associations at the CDKN2A/B gene locus on canine chromosome 11, mirroring previous findings in other dog breeds, such as the greyhound, that also show an elevated risk for OSA. Heritability (h2SNP) was determined to be 20.6% (SE = 0.08; p-value = 5.7 × 10−4) based on a breed prevalence of 20%. The 2563 SNPs across the genome accounted for nearly all the h2SNP of OSA, with 2183 SNPs of small effect, 316 SNPs of moderate effect, and 64 SNPs of large effect. As with many other cancers it is likely that regulatory, non-coding variants underlie the increased risk for cancer development. Our findings confirm a complex genetic basis of OSA, moderate heritability, and the crucial role of the CDKN2A/B locus leading to strong cancer predisposition in dogs. It will ultimately be interesting to study and compare the known genetic loci associated with canine OSA in human OSA

    Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B

    Get PDF
    Background: Canine osteosarcoma is clinically nearly identical to the human disease, but is common and highly heritable, making genetic dissection feasible. Results: Through genome-wide association analyses in three breeds (greyhounds, Rottweilers, and Irish wolfhounds), we identify 33 inherited risk loci explaining 55% to 85% of phenotype variance in each breed. The greyhound locus exhibiting the strongest association, located 150 kilobases upstream of the genes CDKN2A/B, is also the most rearranged locus in canine osteosarcoma tumors. The top germline candidate variant is found at a >90% frequency in Rottweilers and Irish wolfhounds, and alters an evolutionarily constrained element that we show has strong enhancer activity in human osteosarcoma cells. In all three breeds, osteosarcoma-associated loci and regions of reduced heterozygosity are enriched for genes in pathways connected to bone differentiation and growth. Several pathways, including one of genes regulated by miR124, are also enriched for somatic copy-number changes in tumors. Conclusions: Mapping a complex cancer in multiple dog breeds reveals a polygenic spectrum of germline risk factors pointing to specific pathways as drivers of disease

    Identification of two novel mammographic density loci at 6Q25.1

    Get PDF
    INTRODUCTION: Mammographic density (MD) is a strong heritable and intermediate phenotype for breast cancer, but much of its genetic variation remains unexplained. We performed a large-scale genetic association study including 8,419 women of European ancestry to identify MD loci. METHODS: Participants of three Swedish studies were genotyped on a custom Illumina iSelect genotyping array and percent and absolute mammographic density were ascertained using semiautomated and fully automated methods from film and digital mammograms. Linear regression analysis was used to test for SNP-MD associations, adjusting for age, body mass index, menopausal status and six principal components. Meta-analyses were performed by combining P values taking sample size, study-specific inflation factor and direction of effect into account. RESULTS: Genome-wide significant associations were observed for two previously identified loci: ZNF365 (rs10995194, P = 2.3 × 10(−8) for percent MD and P = 8.7 × 10(−9) for absolute MD) and AREG (rs10034692, P = 6.7 × 10(−9) for absolute MD). In addition, we found evidence of association for two variants at 6q25.1, both of which are known breast cancer susceptibility loci: rs9485370 in the TAB2 gene (P = 4.8 × 10(−9) for percent MD and P = 2.5 × 10(−8) for absolute MD) and rs60705924 in the CCDC170/ESR1 region (P = 2.2 × 10(−8) for absolute MD). Both regions have been implicated in estrogen receptor signaling with TAB2 being a potential regulator of tamoxifen response. CONCLUSIONS: We identified two novel MD loci at 6q25.1. These findings underscore the importance of 6q25.1 as a susceptibility region and provide more insight into the mechanisms through which MD influences breast cancer risk. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0591-2) contains supplementary material, which is available to authorized users

    Contribution of Immunogenetic Factors in Susceptibility to Cervical Cancer

    No full text
    Cervical cancer is the second most common cancer in women worldwide. Persistent infection by an oncogenic type of human papillomavirus (HPV) is a necessary but not sufficient cause and there is also a genetic component. This thesis aims to identify host genetic risk factors for cervical cancer based on the hypothesis that susceptibility is affected by genetic variation in the immune response towards HPV infection. Paper I analyzed allergy in sons and cervical cancer in their mothers, and revealed an inverse association between cervical cancer and allergy across generations. Mothers of allergic sons have a lower incidence of cervical cancer, supporting the importance of immunogenetic factors. Paper II investigated the HPV type in 1079 women diagnosed 1965-1993. All women were from families with at least two affected. It appeared that HPV 16 was becoming less common with time. There was no evidence that related women were prone to infection by the same type, indicating that the immunogenetic factors act in a general, rather than an HPV type specific, manner. Paper III and IV analysed the association of candidate genes with susceptibility to cervical cancer in 1306 women with cervical cancer in situ and 288 unrelated controls. Paper III showed the association of variation in the two immune response genes chemokine receptor 2 (CCR-2) and interleukin 4 receptor (IL-4R) with cervical cancer. In paper IV variation at several loci in the MHC region was studied and the importance of the HLA class II locus DQB1 emphasized. This thesis work supports the contribution of genes of the immune system to cervical cancer susceptibility. The genetic risk factors so far identified account for only a part of the genetic susceptibility, which implies that other yet undiscovered variants of importance remain to be identified

    Contribution of Immunogenetic Factors in Susceptibility to Cervical Cancer

    No full text
    Cervical cancer is the second most common cancer in women worldwide. Persistent infection by an oncogenic type of human papillomavirus (HPV) is a necessary but not sufficient cause and there is also a genetic component. This thesis aims to identify host genetic risk factors for cervical cancer based on the hypothesis that susceptibility is affected by genetic variation in the immune response towards HPV infection. Paper I analyzed allergy in sons and cervical cancer in their mothers, and revealed an inverse association between cervical cancer and allergy across generations. Mothers of allergic sons have a lower incidence of cervical cancer, supporting the importance of immunogenetic factors. Paper II investigated the HPV type in 1079 women diagnosed 1965-1993. All women were from families with at least two affected. It appeared that HPV 16 was becoming less common with time. There was no evidence that related women were prone to infection by the same type, indicating that the immunogenetic factors act in a general, rather than an HPV type specific, manner. Paper III and IV analysed the association of candidate genes with susceptibility to cervical cancer in 1306 women with cervical cancer in situ and 288 unrelated controls. Paper III showed the association of variation in the two immune response genes chemokine receptor 2 (CCR-2) and interleukin 4 receptor (IL-4R) with cervical cancer. In paper IV variation at several loci in the MHC region was studied and the importance of the HLA class II locus DQB1 emphasized. This thesis work supports the contribution of genes of the immune system to cervical cancer susceptibility. The genetic risk factors so far identified account for only a part of the genetic susceptibility, which implies that other yet undiscovered variants of importance remain to be identified

    備中国 大谷新田 時通用引替

    No full text
    日本銀行金融研究所所蔵藩札等資料番号:ⅢAエドb2-52-9-2科学研究費助成事業(研究成果公開促進費)で電子化を実施データベースの名称:藩札等に関する統合データベース課題番号:20HP8030利用に関するお問い合わせ:画像の転載(出版物・HP等)に際しては、日本銀行貨幣博物館への申請手続きが必要です。詳しくは貨幣博物館ホームページ(http://www.imes.boj.or.jp/cm/service/)をご覧ください

    Adiposity and sex-specific cancer risk.

    No full text
    Obesity is associated with several types of cancer and fat distribution, which differs dramatically between sexes, has been suggested to be an independent risk factor. However, sex-specific effects on cancer risk have rarely been studied. Here we estimate the effects of fat accumulation and distribution on cancer risk in females and males. We performed a prospective study in 442,519 UK Biobank participants, for 19 cancer types and additional histological subtypes, with a mean follow-up time of 13.4 years. Cox proportional hazard models were used to estimate the effect of 14 different adiposity phenotypes on cancer rates, and a 5% false discovery rate was considered statistically significant. Adiposity-related traits are associated with all but three cancer types, and fat accumulation is associated with a larger number of cancers compared to fat distribution. In addition, fat accumulation or distribution exhibit differential effects between sexes on colorectal, esophageal, and liver cancer

    Data-driven analysis of a validated risk score for ovarian cancer identifies clinically distinct patterns during follow-up and treatment

    No full text
    Background Ovarian cancer is the eighth most common cancer among women and due to late detection prognosis is poor with an overall 5-year survival of 30–50%. Novel biomarkers are needed to reduce diagnostic surgery and enable detection of early-stage cancer by population screening. We have previously developed a risk score based on an 11-biomarker plasma protein assay to distinguish benign tumors (cysts) from malignant ovarian cancer in women with adnexal ovarian mass. Methods Protein concentrations of 11 proteins were characterized in plasma from 1120 clinical samples with a custom version of the proximity extension assay. The performance of the assay was evaluated in terms of prediction accuracy based on receiver operating characteristics (ROC) and multiple hypothesis adjusted Fisher’s Exact tests on achieved sensitivity and specificity. Results The assay’s performance is validated in two independent clinical cohorts with a sensitivity of 0.83/0.91 and specificity of 0.88/0.92. We also show that the risk score follows the clinical development and is reduced upon treatment, and increased with relapse and cancer progression. Data-driven modeling of the risk score patterns during a 2-year follow-up after diagnosis identifies four separate risk score trajectories linked to clinical development and survival. A Cox proportional hazard regression analysis of 5-year survival shows that at time of diagnosis the risk score is the second-strongest predictive variable for survival after tumor stage, whereas MUCIN-16 (CA-125) alone is not significantly predictive. Conclusion The robust performance of the biomarker assay across clinical cohorts and the correlation with clinical development indicates its usefulness both in the diagnostic work-up of women with adnexal ovarian mass and for predicting their clinical course.These authors contributed equally: Karin Stålberg, Karin Sundfeldt, Ulf Gyllensten</p
    corecore