7 research outputs found

    Finite element modelling of inter-ply delamination and intra-yarn cracking in textile laminates

    Get PDF
    The aim of the current study is to demonstrate the effect of inter-ply delamination on stiffness degradation of multi-ply woven composites. Such a demonstration becomes possible due to new technique of modelling textile laminates. It is based on set of boundary value problems for unit cell of a single ply, where boundary conditions imitate interaction with the other plies. Once these problems are solved, local stress distribution and stiffness of the laminate are determined analytically as function of number of the plies and local stress/strain fields obtained in these problems. Hence, it opens the road for an efficient modelling of delamination, which is described as gradual reduction of plies in the laminate

    Multilevel modelling of mechanical properties of textile composites: ITOOL Project

    Get PDF
    The paper presents an overview of the multi-level modelling of textile composites in the ITOOL project, focusing on the models of textile reinforcements, which serve as a basis for micromechanical models of textile composites on the unit cell level. The modelling is performed using finite element analysis (FEA) or approximate methods (method of inclusions), which provide local stiffness and damage information to FEA of composite part on the macro-level

    Experimental search for long-range forces in neutron scattering via a gravitational spectrometer

    Get PDF
    © 2014 American Physical Society, https://dx.doi.org/10.1103/physrevc.89.044002In this work we introduce a method of measuring low-energy scattering cross section with a gravitational spectrometer. In this method we add atoms (i.e., He) to the gravitational spectrometer filled with a target gas of ultracold neutrons (UCN). We search for long-range forces between atoms and UCN by measuring transfer of a small recoil energy similar to 10(-7) eV using the gravitational spectrometer. As a result of this search we set new constraints on the strength of long-range forces within the range of the effective radius of interaction of 10(-7)-10(-4) cm.Russian Foundation for Basic Research (Projects No. 08-02-01052a, No. 10-02-00217a, and No. 10-02-00224a)Ministry of Education and Science of the Russian Federation (Contracts No. 02.740.11.0532 and No. 14.740.11.0083

    Stress distribution in outer and inner plies of textile laminates and novel boundary conditions for unit cell analysis

    Get PDF
    The local stress–strain distribution in a unit cell of a textile laminate depends on the distance of the ply to the surface, the number of plies in the laminate, and the stacking sequence. A conventional meso FE analysis employs boundary conditions for a unit cell of the textile composite based on the assumption of periodicity in the thickness direction. In that case, the stress concentration can be drastically underestimated, especially in outer plies. This paper describes the interaction of plies, local stresses and displacements. To avoid the analysis of the whole laminate and to reduce it to the boundary value problem on one unit cell only, novel boundary conditions are introduced. These conditions are based on the analysis of a single unit cell: they account for the number of the plies in the laminate, distinguish between the outer and inner plies, and reproduce the meso stress–strain state with good precision

    Measurement of Ds + production and nuclear modification factor in Pb-Pb collisions at √sNN = 2.76 TeV

    No full text
    The production of prompt D s + mesons was measured for the first time in collisions of heavy nuclei with the ALICE detector at the LHC. The analysis was performed on a data sample of Pb-Pb collisions at a centre-of-mass energy per nucleon pair, sNN−−−√ , of 2.76 TeV in two different centrality classes, namely 0–10% and 20–50%. D s + mesons and their antiparticles were reconstructed at mid-rapidity from their hadronic decay channel D s +  → ϕπ +, with ϕ → K−K+, in the transverse momentum intervals 4 < p T < 12GeV/c and 6 < p T < 12 GeV/c for the 0–10% and 20–50% centrality classes, respectively. The nuclear modification factor R AA was computed by comparing the p T-differential production yields in Pb-Pb collisions to those in proton-proton (pp) collisions at the same energy. This pp reference was obtained using the cross section measured at s√=7 TeV and scaled to s√=2.76 TeV. The R AA of D s + mesons was compared to that of non-strange D mesons in the 10% most central Pb-Pb collisions. At high p T (8 < p T < 12 GeV/c) a suppression of the D s + -meson yield by a factor of about three, compatible within uncertainties with that of non-strange D mesons, is observed. At lower p T (4 < p T < 8 GeV/c) the values of the D s + -meson R AA are larger than those of non-strange D mesons, although compatible within uncertainties. The production ratios D s + /D0 and D s + /D+ were also measured in Pb-Pb collisions and compared to their values in proton-proton collisions

    Inclusive quarkonium production at forward rapidity in pp collisions at √s = 8 TeV

    No full text
    corecore