89 research outputs found

    A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization

    Get PDF
    Based on the idea of randomized coordinate descent of α\alpha-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by V\~u and Condat that includes the well known ADMM as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.Comment: 10 page

    Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications

    Get PDF
    Nonsmoothness is often a curse for optimization; but it is sometimes a blessing, in particular for applications in machine learning. In this paper, we present the specific structure of nonsmooth optimization problems appearing in machine learning and illustrate how to leverage this structure in practice, for compression, acceleration, or dimension reduction. We pay a special attention to the presentation to make it concise and easily accessible, with both simple examples and general results

    A Distributed Flexible Delay-tolerant Proximal Gradient Algorithm

    Get PDF
    We develop and analyze an asynchronous algorithm for distributed convex optimization when the objective writes a sum of smooth functions, local to each worker, and a non-smooth function. Unlike many existing methods, our distributed algorithm is adjustable to various levels of communication cost, delays, machines computational power, and functions smoothness. A unique feature is that the stepsizes do not depend on communication delays nor number of machines, which is highly desirable for scalability. We prove that the algorithm converges linearly in the strongly convex case, and provide guarantees of convergence for the non-strongly convex case. The obtained rates are the same as the vanilla proximal gradient algorithm over some introduced epoch sequence that subsumes the delays of the system. We provide numerical results on large-scale machine learning problems to demonstrate the merits of the proposed method.Comment: to appear in SIAM Journal on Optimizatio

    Proximal Gradient methods with Adaptive Subspace Sampling

    Get PDF
    Many applications in machine learning or signal processing involve nonsmooth optimization problems. This nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized proximal gradient method harnessing this underlying structure. We introduce two key components: i) a random subspace proximal gradient algorithm; ii) an identification-based sampling of the subspaces. Their interplay brings a significant performance improvement on typical learning problems in terms of dimensions explored

    Newton acceleration on manifolds identified by proximal-gradient methods

    Full text link
    Proximal methods are known to identify the underlying substructure of nonsmooth optimization problems. Even more, in many interesting situations, the output of a proximity operator comes with its structure at no additional cost, and convergence is improved once it matches the structure of a minimizer. However, it is impossible in general to know whether the current structure is final or not; such highly valuable information has to be exploited adaptively. To do so, we place ourselves in the case where a proximal gradient method can identify manifolds of differentiability of the nonsmooth objective. Leveraging this manifold identification, we show that Riemannian Newton-like methods can be intertwined with the proximal gradient steps to drastically boost the convergence. We prove the superlinear convergence of the algorithm when solving some nondegenerated nonsmooth nonconvex optimization problems. We provide numerical illustrations on optimization problems regularized by 1\ell_1-norm or trace-norm

    On the Proximal Gradient Algorithm with Alternated Inertia

    Get PDF
    International audienceIn this paper, we investigate the attractive properties of the proximal gradient algorithm with inertia. Notably, we show that using alternated inertia yields monotonically decreasing functional values, which contrasts with usual accelerated proximal gradient methods. We also provide convergence rates for the algorithm with alternated inertia based on local geometric properties of the objective function. The results are put into perspective by discussions on several extensions and illustrations on common regularized problems
    corecore