113 research outputs found
Neuroprotective activation of astrocytes by methylmercury exposure in the inferior colliculus
Methylmercury (MeHg) is well known to induce auditory disorders such as dysarthria. When we performed a global analysis on the brains of mice exposed to MeHg by magnetic resonance imaging, an increase in the T1 signal in the inferior colliculus (IC), which is localized in the auditory pathway, was observed. Therefore, the purpose of this study is to examine the pathophysiology and auditory dysfunction induced by MeHg, focusing on the IC. Measurement of the auditory brainstem response revealed increases in latency and decreases in threshold in the IC of mice exposed to MeHg for 4 weeks compared with vehicle mice. Incoordination in MeHg-exposed mice was noted after 6 weeks of exposure, indicating that IC dysfunction occurs earlier than incoordination. There was no change in the number of neurons or microglial activity, while the expression of glial fibrillary acidic protein, a marker for astrocytic activity, was elevated in the IC of MeHg-exposed mice after 4 weeks of exposure, indicating that astrogliosis occurs in the IC. Suppression of astrogliosis by treatment with fluorocitrate exacerbated the latency and threshold in the IC evaluated by the auditory brainstem response. Therefore, astrocytes in the IC are considered to play a protective role in the auditory pathway. Astrocytes exposed to MeHg increased the expression of brain-derived neurotrophic factor in the IC, suggesting that astrocytic brain-derived neurotrophic factor is a potent protectant in the IC. This study showed that astrogliosis in the IC could be an adaptive response to MeHg toxicity. The overall toxicity of MeHg might be determined on the basis of the balance between MeHg-mediated injury to neurons and protective responses from astrocytes.This work was partly supported by a KAKENHI grant from the Japan Society for the Promotion of Science, grant numbers 15KK0024 and 17H04714 to Y.I. and 17K00569 to T.Y. This work was also financially supported in part by Tokushima Bunri University. This manuscript has been reviewed by a professional language editing service (American Journal Experts)
Potentiation of 17 beta-estradiol synthesis in the brain and elongation of seizure latency through dietary supplementation with docosahexaenoic acid
Several studies have shown that docosahexaenoic acid (DHA) attenuates epileptic seizures; however, the molecular mechanism by which it achieves this effect is still largely unknown. DHA stimulates the retinoid X receptor, which reportedly regulates the expression of cytochrome P450 aromatase (P450arom). This study aimed to clarify how DHA suppresses seizures, focusing on the regulation of 17β-estradiol synthesis in the brain. Dietary supplementation with DHA increased not only the expression of P450arom, but also 17β-estradiol in the cerebral cortex. While DHA did not affect the duration or scores of the seizures induced by pentylenetetrazole, DHA significantly prolonged the seizure latency. A P450arom inhibitor, letrozole, reduced 17β-estradiol levels and completely suppressed the elongation of seizure latency elicited by DHA. These results suggest that DHA delays the onset of seizures by promoting the synthesis of 17β-estradiol in the brain. DHA upregulated the expression of anti-oxidative enzymes in the cerebral cortex. The oxidation in the cerebral cortex induced by pentylenetetrazole was significantly attenuated by DHA, and letrozole completely inhibited this suppressive action. Thus, the anti-oxidative effects of 17β-estradiol may be involved in the prevention of seizures mediated by DHA. This study revealed that 17β-estradiol in the brain mediated the physiological actions of DHA.This work was partially supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan, KAKENHI for Y.I., K.I. and T.Y. (Nos. 26740024, 26460139 and 25340047), a grant from the Mishima Kaiun Memorial Foundation for Y.I. and a grant from the SKYLARK Food Science Institute for Y.I. This work was also financially supported in part by Tokushima Bunri University. We thank Y. Kamihashi, Y. Utagawa, and K. Kojima for their technical assistance. We also acknowledge S. Smiley-Jewell and M. Paz Prada for editing the manuscript. This manuscript has been checked by a professional language editing service, American Journal Experts
Institute of Laboratory Animal Research, Center for Animal Research and Education, Nagoya University
The Institute of Laboratory Animal Research(ILAR)within the Center for Animal Research and Education (CARE), Nagoya University was established in July 2013. The aim of ILAR is to provide care for laboratory animals in safe and sanitary manner that enables researchers in the Nagoya University Higashiyama Campus to conduct proper experiments. We will now give an outline and
introduce the characteristics of the new ILAR
The clinical impact of macrophage polarity after Kasai portoenterostomy in biliary atresia
IntroductionBiliary atresia (BA) is a cholestatic hepatopathy caused by fibrosing destruction of intrahepatic and extrahepatic bile ducts, and its etiology has not been clearly revealed. In BA, liver fibrosis progression is often observed even after Kasai portoenterostomy (KPE), and more than half of cases require liver transplantation in their lifetime in Japan. Macrophages play an important role in liver fibrosis progression and are classically divided into proinflammatory (M1) and fibrotic macrophages (M2), whose phenotypic transformation is called “macrophage polarity.” The polarity has been reported to reflect the tissue microenvironment. In this study, we examined the relationship between macrophage polarity and the post-KPE clinical course.Materials and methodsThirty BA patients who underwent KPE in our institution from 2000 to 2020 were recruited. Multiple immunostainings for CD68, CD163, CK19, and α-SMA were carried out on liver biopsy specimens obtained at KPE. ROC curves were calculated based on each clinical event, and the correlation with the clinical data was analyzed.Results and discussionThe M2 ratio, defined as the proportion of M2 macrophages (CD163-positive cells), was correlated inversely with the occurrence of postoperative cholangitis (AUC: 0.7602). The patients were classified into M2 high (n = 19) and non-high (n = 11) groups based on an M2 ratio value obtained from the Youden index ( = 0.918). As a result, pathological evaluations (Metavir score, αSMA area fraction, and CK19 area fraction) were not significantly different between these groups. In mild liver fibrosis cases (Metavir score = 0–2), the M2 non-high group had a significantly lower native liver survival rate than the high group (p = 0.02). Moreover, 4 out of 8 cases in the M2 non-high group underwent early liver transplantation within 2 years after KPE.ConclusionsNon-M2 macrophages, including M1 macrophages, may be correlated with postoperative cholangitis, and the M2 non-high group in mild liver fibrosis cases had a significantly lower native liver survival rate than the high group, requiring early liver transplantation in this study. Preventing advanced liver fibrosis is a key factor in improving native liver survival for BA patients, and liver macrophages may play important roles in liver homeostasis and the promotion of inflammation and fibrosis
Survey of Period Variations of Superhumps in SU UMa-Type Dwarf Novae
We systematically surveyed period variations of superhumps in SU UMa-type
dwarf novae based on newly obtained data and past publications. In many
systems, the evolution of superhump period are found to be composed of three
distinct stages: early evolutionary stage with a longer superhump period,
middle stage with systematically varying periods, final stage with a shorter,
stable superhump period. During the middle stage, many systems with superhump
periods less than 0.08 d show positive period derivatives. Contrary to the
earlier claim, we found no clear evidence for variation of period derivatives
between superoutburst of the same object. We present an interpretation that the
lengthening of the superhump period is a result of outward propagation of the
eccentricity wave and is limited by the radius near the tidal truncation. We
interpret that late stage superhumps are rejuvenized excitation of 3:1
resonance when the superhumps in the outer disk is effectively quenched. Many
of WZ Sge-type dwarf novae showed long-enduring superhumps during the
post-superoutburst stage having periods longer than those during the main
superoutburst. The period derivatives in WZ Sge-type dwarf novae are found to
be strongly correlated with the fractional superhump excess, or consequently,
mass ratio. WZ Sge-type dwarf novae with a long-lasting rebrightening or with
multiple rebrightenings tend to have smaller period derivatives and are
excellent candidate for the systems around or after the period minimum of
evolution of cataclysmic variables (abridged).Comment: 239 pages, 225 figures, PASJ accepte
An interaction between Nrf2 polymorphisms and smoking status affects annual decline in FEV1: a longitudinal retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>An Nrf2-dependent response is a central protective mechanism against oxidative stress. We propose that particular genetic variants of the <it>Nrf2 </it>gene may be associated with a rapid forced expiratory volume in one second (FEV<sub>1</sub>) decline induced by cigarette smoking.</p> <p>Methods</p> <p>We conducted a retrospective cohort study of 915 Japanese from a general population. Values of annual decline in FEV<sub>1 </sub>were computed for each individual using a linear mixed-effect model. Multiple clinical characteristics were assessed to identify associations with annual FEV<sub>1 </sub>decline. Tag single-nucleotide polymorphisms (SNPs) in the <it>Nrf2 </it>gene (rs2001350, rs6726395, rs1962142, rs2364722) and one functional SNP (rs6721961) in the <it>Nrf2 </it>promoter region were genotyped to assess interactions between the <it>Nrf2 </it>polymorphisms and smoking status on annual FEV<sub>1 </sub>decline.</p> <p>Results</p> <p>Annual FEV<sub>1 </sub>decline was associated with smoking behavior and inversely correlated with FEV<sub>1</sub>/FVC and FEV<sub>1 </sub>% predicted. The mean annual FEV<sub>1 </sub>declines in individuals with rs6726395 G/G, G/A, or A/A were 26.2, 22.3, and 20.8 mL/year, respectively, and differences in these means were statistically significant (p<sub>corr </sub>= 0.016). We also found a significant interaction between rs6726395 genotype and smoking status on the FEV<sub>1 </sub>decline (p for interaction = 0.011). The haplotype rs2001350T/rs6726395A/rs1962142A/rs2364722A/rs6721961T was associated with lower annual decline in FEV<sub>1 </sub>(p = 0.004).</p> <p>Conclusions</p> <p>This study indicated that an Nrf2-dependent response to exogenous stimuli may affect annual FEV<sub>1 </sub>decline in the general population. It appears that the genetic influence of <it>Nrf2 </it>is modified by smoking status, suggesting the presence of a gene-environment interaction in accelerated decline in FEV<sub>1</sub>.</p
Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm
Rice (Oryza sativa) allelic sugary1 (sug1) mutants defective in isoamylase 1 (ISA1) accumulate varying levels of starch and phytoglycogen in their endosperm, and the activity of a pullulanase-type of a debranching enzyme (PUL) was found to correlate closely with the severity of the sug1 phenotype. Thus, three PUL-deficient mutants were generated to investigate the function of PUL in starch biosynthesis. The reduction of PUL activity had no pleiotropic effects on the other enzymes involved in starch biosynthesis. The short chains (DP ≤13) of amylopectin in PUL mutants were increased compared with that of the wild type, but the extent of the changes was much smaller than that of sug1 mutants. The α-glucan composition [amylose, amylopectin, water-soluble polysaccharide (WSP)] and the structure of the starch components (amylose and amylopectin) of the PUL mutants were essentially the same, although the average chain length of the B2-3 chains of amylopectin in the PUL mutant was ∼3 residues longer than that of the wild type. The double mutants between the PUL-null and mild sug1 mutants still retained starch in the outer layer of endosperm tissue, while the amounts of WSP and short chains (DP ≤7) of amylopectin were higher than those of the sug1 mutant; this indicates that the PUL function partially overlaps with that of ISA1 and its deficiency has a much smaller effect on the synthesis of amylopectin than ISA1 deficiency and the variation of the sug1 phenotype is not significantly dependent on the PUL activities
- …