135 research outputs found
The Eyes Have It: Sex and Sexual Orientation Differences in Pupil Dilation Patterns
Recent research suggests profound sex and sexual orientation differences in sexual response. These results, however, are based on measures of genital arousal, which have potential limitations such as volunteer bias and differential measures for the sexes. The present study introduces a measure less affected by these limitations. We assessed the pupil dilation of 325 men and women of various sexual orientations to male and female erotic stimuli. Results supported hypotheses. In general, self-reported sexual orientation corresponded with pupil dilation to men and women. Among men, substantial dilation to both sexes was most common in bisexual-identified men. In contrast, among women, substantial dilation to both sexes was most common in heterosexual-identified women. Possible reasons for these differences are discussed. Because the measure of pupil dilation is less invasive than previous measures of sexual response, it allows for studying diverse age and cultural populations, usually not included in sexuality research
The Schroedinger Problem, Levy Processes Noise in Relativistic Quantum Mechanics
The main purpose of the paper is an essentially probabilistic analysis of
relativistic quantum mechanics. It is based on the assumption that whenever
probability distributions arise, there exists a stochastic process that is
either responsible for temporal evolution of a given measure or preserves the
measure in the stationary case. Our departure point is the so-called
Schr\"{o}dinger problem of probabilistic evolution, which provides for a unique
Markov stochastic interpolation between any given pair of boundary probability
densities for a process covering a fixed, finite duration of time, provided we
have decided a priori what kind of primordial dynamical semigroup transition
mechanism is involved. In the nonrelativistic theory, including quantum
mechanics, Feyman-Kac-like kernels are the building blocks for suitable
transition probability densities of the process. In the standard "free" case
(Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered.
In the framework of the Schr\"{o}dinger problem, the "free noise" can also be
extended to any infinitely divisible probability law, as covered by the
L\'{e}vy-Khintchine formula. Since the relativistic Hamiltonians
and are known to generate such laws, we focus on
them for the analysis of probabilistic phenomena, which are shown to be
associated with the relativistic wave (D'Alembert) and matter-wave
(Klein-Gordon) equations, respectively. We show that such stochastic processes
exist and are spatial jump processes. In general, in the presence of external
potentials, they do not share the Markov property, except for stationary
situations. A concrete example of the pseudodifferential Cauchy-Schr\"{o}dinger
evolution is analyzed in detail. The relativistic covariance of related waveComment: Latex fil
Dark Energy from structure: a status report
The effective evolution of an inhomogeneous universe model in any theory of
gravitation may be described in terms of spatially averaged variables. In
Einstein's theory, restricting attention to scalar variables, this evolution
can be modeled by solutions of a set of Friedmann equations for an effective
volume scale factor, with matter and backreaction source terms. The latter can
be represented by an effective scalar field (`morphon field') modeling Dark
Energy.
The present work provides an overview over the Dark Energy debate in
connection with the impact of inhomogeneities, and formulates strategies for a
comprehensive quantitative evaluation of backreaction effects both in
theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to
refurnishing the standard cosmological equations, but also lay down a number of
challenges and unresolved issues in connection with their observational
interpretation.
The present status of this subject is intermediate: we have a good
qualitative understanding of backreaction effects pointing to a global
instability of the standard model of cosmology; exact solutions and
perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some
researchers, the concordance high-precision cosmology, the architecture of
current N-body simulations, as well as standard perturbative approaches may all
fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59
pages, 2 figures; matches published versio
Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey
Context. The data from the Euclid mission will enable the measurement of the angular positions and weak lensing shapes of over a billion galaxies,
with their photometric redshifts obtained together with ground-based observations. This large dataset, with well-controlled systematic effects, will
allow for cosmological analyses using the angular clustering of galaxies (GCph) and cosmic shear (WL). For Euclid, these two cosmological probes
will not be independent because they will probe the same volume of the Universe. The cross-correlation (XC) between these probes can tighten
constraints and is therefore important to quantify their impact for Euclid.
Aims. In this study, we therefore extend the recently published Euclid forecasts by carefully quantifying the impact of XC not only on the
final parameter constraints for different cosmological models, but also on the nuisance parameters. In particular, we aim to decipher the amount
of additional information that XC can provide for parameters encoding systematic effects, such as galaxy bias, intrinsic alignments (IAs), and
knowledge of the redshift distributions.
Methods. We follow the Fisher matrix formalism and make use of previously validated codes. We also investigate a different galaxy bias model,
which was obtained from the Flagship simulation, and additional photometric-redshift uncertainties; we also elucidate the impact of including the
XC terms on constraining these latter.
Results. Starting with a baseline model, we show that the XC terms reduce the uncertainties on galaxy bias by ∼17% and the uncertainties on IA
by a factor of about four. The XC terms also help in constraining the γ parameter for minimal modified gravity models. Concerning galaxy bias,
we observe that the role of the XC terms on the final parameter constraints is qualitatively the same irrespective of the specific galaxy-bias model
used. For IA, we show that the XC terms can help in distinguishing between different models, and that if IA terms are neglected then this can lead
to significant biases on the cosmological parameters. Finally, we show that the XC terms can lead to a better determination of the mean of the
photometric galaxy distributions.
Conclusions. We find that the XC between GCph and WL within the Euclid survey is necessary to extract the full information content from the data
in future analyses. These terms help in better constraining the cosmological model, and also lead to a better understanding of the systematic effects
that contaminate these probes. Furthermore, we find that XC significantly helps in constraining the mean of the photometric-redshift distributions,
but, at the same time, it requires more precise knowledge of this mean with respect to single probes in order not to degrade the final “figure of
merit”
Euclid preparation: VII. Forecast validation for Euclid cosmological probes
Aims: The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts.
/
Methods: We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required.
/
Results: We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three
Euclid preparation - VII. Forecast validation for Euclid cosmological probes
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts.
Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required.
Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three
Euclid preparation: VII. Forecast validation for Euclid cosmological probes
Aims. The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts. Methods. We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required. Results. We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
- …