79 research outputs found
Down regulation by a low-zinc diet in gene expression of rat prostatic thymidylate synthase and thymidine kinase
<p>Abstract</p> <p>Background</p> <p>Zinc has a wide spectrum of biological activities and its deficiency is related to various abnormalities of cell metabolism.</p> <p>Methods</p> <p>Wistar male rats, at age of 4 weeks, were fed a low-zinc diet for six weeks. The levels of bromodeoxyuridine incorporated into the prostatic DNA and the mRNA expression levels of prostate thymidylate synthase and thymidine kinase were examined.</p> <p>Result</p> <p>The low-zinc diet caused a marked reduction in the body growth and organ weights, resulted in a low hematopoiesis, hypo-albuminemia and hypocholesterolemia. Although there were few differences in plasma biochemical markers, plasma levels of luteinizing hormone and testosterone were reduced by the low-zinc diet. Bromodeoxyuridine-immunoreactive (S-phase) cells and mRNA expression levels of thymidylate synthase and thymidine kinase in the prostate cells were markedly affected by the low-zinc diet.</p> <p>Conclusion</p> <p>A low-zinc diet appears to reduce the body growth and organ weights including prostate, causing low plasma levels of luteinizing hormone and testosterone and reduction in prostate DNA replication in growing-rats.</p
Effects of mild calorie restriction and high-intensity interval walking in middle-aged and older overweight Japanese
We investigated whether a combination of mild calorie restriction (MCR) and high-intensity interval walking (HIW) improved physical fitness more than HIW alone in middle-aged and older overweight Japanese (40-69 years old, BMI >= 23.6 kg/m(2)). Forty-seven women and 16 men were divided into MCR + HIW and HIW groups. All subjects performed HIW: >= 5 sets of 3-min low-intensity walking (40% peak aerobic capacity for walking, VO2peak) and 3-min high-intensity walking (>= 70% VO2peak) per day, >= 4 days per week, for 16 weeks while energy expenditure was monitored with a tri-axial accelerometer. The MCR + HIW group consumed meal replacement formula (240 kcal): a mixture of low-carbohydrates and -fat and high-protein, for either lunch or dinner everyday and therefore, had similar to 87% of the energy intake of the HIW group during the intervention period. Although the HIW group showed improvements in BMI, blood pressure, and several blood chemicals, the MCR + HIW group had greater improvement. Moreover, the medical expenditure for the 6 months including the intervention period was 59% lower in the MCR + HIW group than in the HIW group. Our strategy of a short-term combination of MCR and HIW may thus prevent lifestyle-associated diseases and improve health in middle-aged and older overweight Japanese.ArticleEXPERIMENTAL GERONTOLOGY. 44(10):666-675 (2009)journal articl
Advanced Clinical Usefulness of Ultrasonography for Diseases in Oral and Maxillofacial Regions
Various kinds of diseases may be found in the oral and maxillofacial regions and various modalities may be applied for their diagnosis, including intra-oral radiography, panoramic radiography, ultrasonography, computed tomography, magnetic resonance imaging, and nuclear medicine methods such as positron emission tomography. Of these modalities, ultrasound imaging is easy to use for the detection of noninvasive and soft tissue-related diseases. Doppler ultrasound images taken in the B-mode can provide vascular information associated with the morphology of soft tissues. Thus, ultrasound imaging plays an important role in confirming the diagnosis of many kinds of diseases in such oral and maxillofacial regions as the tongue, lymph nodes, salivary glands, and masticatory muscles. In the present article, we introduce three new applications of ultrasonography: guided fine-needle aspiration, measurement of tongue cancer thickness, and diagnosis of metastasis to cervical lymph nodes
NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery
The state of sodium inserted in the hard carbon electrode of a sodium ion battery having practical cyclability was investigated using solid state 23Na NMR. The spectra of carbon samples charged (reduced) above 50 mAh g−1 showed clear three components. Two peaks at 9.9 ppm and 5.2 ppm were ascribed to reversible sodium stored between disordered graphene sheets in hard carbon because the shift of the peaks was invariable with changing strength of external magnetic field. One broad signal at about −9 to −16 ppm was assigned to sodium in heterogeneously distributed closed nanopores in hard carbon. Low temperature 23Na static and magic angle spinning NMR spectra didn't split or shift whereas the spectral pattern of 7Li NMR for lithium-inserted hard carbon changes depending on the temperature. This strongly suggests that the exchange of sodium atoms between different sites in hard carbon is slow. These studies show that sodium doesn't form quasi-metallic clusters in closed nanopores of hard carbon although sodium assembles at nanopores while the cell is electrochemically charged
Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120
The changes in the expression of sigma factor genes during dehydration in terrestrial Nostoc HK-01 and aquatic Anabaena PCC 7120 were determined. The expression of the sigJ gene in terrestrial Nostoc HK-01, which is homologous to sigJ (alr0277) in aquatic Anabaena PCC 7120, was significantly induced in the mid-stage of dehydration. We constructed a higher-expressing transformant of the sigJ gene (HE0277) in Anabaena PCC 7120, and the transformant acquired desiccation tolerance. The results of Anabaena oligonucleotide microarray experiments showed that a comparatively large number of genes relating to polysaccharide biosynthesis were upregulated in the HE0277 cells. The extracellular polysaccharide released into the culture medium of the HE0277 cells was as much as 3.2-fold more than that released by the control cells. This strongly suggests that the group 3 sigma factor gene sigJ is fundamental and conducive to desiccation tolerance in these cyanobacteria
Repurposing bromocriptine for Aβ metabolism in Alzheimer’s disease (REBRAnD) study : randomised placebo-controlled double-blind comparative trial and open-label extension trial to investigate the safety and efficacy of bromocriptine in Alzheimer’s disease with presenilin 1 (PSEN1) mutations
Introduction
Alzheimer’s disease (AD) is one of the most common causes of dementia. Pathogenic variants in the presenilin 1 (PSEN1) gene are the most frequent cause of early-onset AD. Medications for patients with AD bearing PSEN1 mutation (PSEN1-AD) are limited to symptomatic therapies and no established radical treatments are available. Induced pluripotent stem cell (iPSC)-based drug repurposing identified bromocriptine as a therapeutic candidate for PSEN1-AD. In this study, we used an enrichment strategy with iPSCs to select the study population, and we will investigate the safety and efficacy of an orally administered dose of bromocriptine in patients with PSEN1-AD.
Methods and analysis
This is a multicentre, randomised, placebo-controlled trial. AD patients with PSEN1 mutations and a Mini Mental State Examination-Japanese score of ≤25 will be randomly assigned, at a 2:1 ratio, to the trial drug or placebo group (≥4 patients in TW-012R and ≥2 patients in placebo). This clinical trial consists of a screening period, double-blind phase (9 months) and extension phase (3 months). The double-blind phase for evaluating the efficacy and safety is composed of the low-dose maintenance period (10 mg/day), high-dose maintenance period (22.5 mg/day) and tapering period of the trial drug. Additionally, there is an open-labelled active drug extension period for evaluating long-term safety. Primary outcomes are safety and efficacy in cognitive and psychological function. Also, exploratory investigations for the efficacy of bromocriptine by neurological scores and biomarkers will be conducted.
Ethics and dissemination
The proposed trial is conducted according to the Declaration of Helsinki, and was approved by the Institutional Review Board (K070). The study results are expected to be disseminated at international or national conferences and published in international journals following the peer-review process
Dectin-2 recognises mannosylated O-antigens of human opportunistic pathogens and augments lipopolysaccharide activation of myeloid cells
Lipopolysaccharide (LPS) consists of a relatively conserved region of lipid A and core-oligosaccharide, and a highly variable region of O-antigen polysaccharide. While lipid A is known to bind to the toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and the mannosylated O-antigen found in a human opportunistic pathogen Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared to Salmonella enterica O66 LPS which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognise H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2 dependent, as Dectin-2 knockout BM-DCs failed to do so. This receptor crosstalk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a, also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several gram-negative bacteria augment TLR4 responses through interaction with Dectin-2
Genetic and Molecular Analysis of Wild-Derived Arrhythmic Mice
A new circadian variant was isolated by screening the intercross offspring of wild-caught mice (Mus musculus castaneus). This variant was characterized by an initial maintenance of damped oscillations and subsequent loss of rhythmicity after being transferred from light-dark (LD) cycles to constant darkness (DD). To map the genes responsible for the persistence of rhythmicity (circadian ratio) and the length of free-running period (τ), quantitative trait locus (QTL) analysis was performed using F2 mice obtained from an F1 cross between the circadian variant and C57BL/6J mice. As a result, a significant QTL with a main effect for circadian ratio (Arrhythmicity; Arrh-1) was mapped on Chromosome (Chr) 8. For τ, four significant QTLs, Short free-running period (Sfp-1) (Chr 1), Sfp-2 (Chr 6), Sfp-3 (Chr 8), Sfp-4 (Chr 11) were determined. An epistatic interaction was detected between Chr 3 (Arrh-2) and Chr 5 (Arrh-3). An in situ hybridization study of clock genes and mouse Period1::luciferase (mPer1::luc) real-time monitoring analysis in the suprachiasmatic nucleus (SCN) suggested that arrhythmicity in this variant might not be attributed to core circadian mechanisms in the SCN neurons. Our strategy using wild-derived variant mice may provide a novel opportunity to evaluate circadian and its related disorders in human that arise from the interaction between multiple variant genes
- …