15,892 research outputs found
A Remark on the Large Difference between the Glueball Mass and T(C) in Quenched QCD
The lattice QCD studies indicate that the critical temperature MeV of the deconfinement phase transition in quenched QCD is
considerably smaller than the lowest-lying glueball mass MeV, i.e., . As a consequence of this large
difference, the thermal excitation of the glueball in the confinement phase is
strongly suppressed by the statistical factor as even near . We consider its physical implication, and
argue the abnormal feature of the deconfinement phase transition in quenched
QCD from the statistical viewpoint. To appreciate this, we demonstrate a
statistical argument of the QCD phase transition using the recent lattice QCD
data. From the phenomenological relation among and the glueball mass, the
deconfinement transition is found to take place in quenched QCD before a
reasonable amount of glueballs is thermally excited. In this way, quenched QCD
reveals a question ``what is the trigger of the deconfinement phase transition
?''Comment: 6 pages, 4 figure
On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations Associated with Nonlinear Boundary Conditions
In this article, we study the large time behavior of solutions of first-order
Hamilton-Jacobi Equations, set in a bounded domain with nonlinear Neumann
boundary conditions, including the case of dynamical boundary conditions. We
establish general convergence results for viscosity solutions of these
Cauchy-Neumann problems by using two fairly different methods : the first one
relies only on partial differential equations methods, which provides results
even when the Hamiltonians are not convex, and the second one is an optimal
control/dynamical system approach, named the "weak KAM approach" which requires
the convexity of Hamiltonians and gives formulas for asymptotic solutions based
on Aubry-Mather sets
Time-Dependent Variational Approach to the Non-Abelian Pure Gauge Theory
The time-dependent variational approach to the pure Yang-Mills gauge theory,
especially a color su(3) gauge theory, is formulated in the functional
Schroedinger picture with a Gaussian wave functional approximation. The
equations of motion for the quantum gauge fields are formulated in the
Liouville-von Neumann form. This variational approach is applied in order to
derive the transport coefficients, such as the shear viscosity, for the pure
gluonic matter by using the linear response theory. As a result, the
contribution to the shear viscosity from the quantum gluons is zero up to the
lowest order of the coupling g in the quantum gluonic matter.Comment: 19 pages, no figures, using PTPTeX.cl
High efficiency dark-to-bright exciton conversion in carbon nanotubes
We report that dark excitons can have a large contribution to the emission
intensity in carbon nanotubes due to an efficient exciton conversion from a
dark state to a bright state. Time-resolved photoluminescence measurements are
used to investigate decay dynamics and diffusion properties of excitons, and we
obtain intrinsic lifetimes and diffusion lengths of bright excitons as well as
diffusion coefficients for both bright and dark excitons. We find that the
dark-to-bright transition rates can be considerably high, and that more than
half of the dark excitons can be transformed into the bright excitons. The
state transition rates have a large chirality dependence with a family pattern,
and the conversion efficiency is found to be significantly enhanced by adsorbed
air molecules on the surface of the nanotubes. Our findings show the nontrivial
significance of the dark excitons on the emission kinetics in low dimensional
materials, and demonstrate the potential for engineering the dark-to-bright
conversion process by using surface interactions.Comment: 7 pages, 4 figure
Survival of charmonia above Tc in anisotropic lattice QCD
We find a strong evidence for the survival of and as
spatially-localized (quasi-)bound states above the QCD critical
temperature , by investigating the boundary-condition dependence of their
energies and spectral functions. In a finite-volume box, there arises a
boundary-condition dependence for spatially spread states, while no such
dependence appears for spatially compact states. In lattice QCD, we find almost
{\it no} spatial boundary-condition dependence for the energy of the
system in and channels for . We also
investigate the spectral function of charmonia above in lattice QCD using
the maximum entropy method (MEM) in terms of the boundary-condition dependence.
There is {\it no} spatial boundary-condition dependence for the low-lying peaks
corresponding to and around 3GeV at . These facts
indicate the survival of and as compact
(quasi-)bound states for .Comment: 4 pages, 1 figur
Nuclear Force from Monte Carlo Simulations of Lattice Quantum Chromodynamics
The nuclear force acting between protons and neutrons is studied in the Monte
Carlo simulations of the fundamental theory of the strong interaction, the
quantum chromodynamics defined on the hypercubic space-time lattice. After a
brief summary of the empirical nucleon-nucleon (NN) potentials which can fit
the NN scattering experiments in high precision, we outline the basic
formulation to derive the potential between the extended objects such as the
nucleons composed of quarks. The equal-time Bethe-Salpeter amplitude is a key
ingredient for defining the NN potential on the lattice. We show the results of
the numerical simulations on a lattice with the lattice spacing fm (lattice volume (4.4 fm)) in the quenched approximation.
The calculation was carried out using the massively parallel computer Blue
Gene/L at KEK. We found that the calculated NN potential at low energy has
basic features expected from the empirical NN potentials; attraction at long
and medium distances and the repulsive core at short distance. Various future
directions along this line of research are also summarized.Comment: 13 pages, 4 figures, version accepted for publication in
"Computational Science & Discovery" (IOP
Nuclear Force from Lattice QCD
The first lattice QCD result on the nuclear force (the NN potential) is
presented in the quenched level. The standard Wilson gauge action and the
standard Wilson quark action are employed on the lattice of the size 16^3\times
24 with the gauge coupling beta=5.7 and the hopping parameter kappa=0.1665. To
obtain the NN potential, we adopt a method recently proposed by CP-PACS
collaboration to study the pi pi scattering phase shift. It turns out that this
method provides the NN potentials which are faithful to those obtained in the
analysis of NN scattering data. By identifying the equal-time Bethe-Salpeter
wave function with the Schroedinger wave function for the two nucleon system,
the NN potential is reconstructed so that the wave function satisfies the
time-independent Schroedinger equation. In this report, we restrict ourselves
to the J^P=0^+ and I=1 channel, which enables us to pick up unambiguously the
``central'' NN potential V_{central}(r). The resulting potential is seen to
posses a clear repulsive core of about 500 MeV at short distance (r < 0.5 fm).
Although the attraction in the intermediate and long distance regions is still
missing in the present lattice set-up, our method is appeared to be quite
promising in reconstructing the NN potential with lattice QCD.Comment: A talk given at the XXIV International Symposium on Lattice Field
Theory (Lattice2006), Tucson, Arizona, USA, July 23-28, 2006, 3 figures,
7page
Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet
Anti-decuplet penta-quark baryon is studied with the quenched anisotropic
lattice QCD for accurate measurement of the correlator. Both the positive and
negative parity states are studied using a non-NK type interpolating field with
I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state
is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified
with the experimentally observed Theta^+(1540). The lowest negative parity
state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the
empirical value. To confirm that this state is a compact 5Q resonance, a new
method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis
shows that the observed state in the negative parity channel is an NK
scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004
at SPring-8, Japan, 8 pages, 7 figures, 2 table
- …