11,572 research outputs found

    Theory of Orbital Ordering, Fluctuation and Resonant X-ray Scattering in Manganites

    Full text link
    A theory of resonant x-ray scattering in perovskite manganites is developed by applying the group theory to the correlation functions of the pseudospin operators for the orbital degree of freedom. It is shown that static and dynamical informations of the orbital state are directly obtained from the elastic, diffuse and inelastic scatterings due to the tensor character of the scattering factor. We propose that the interaction and its anisotropy between orbitals are directly identified by the intensity contour of the diffuse scattering in the momentum space.Comment: 4 pages, 1 figur

    Total reality of conormal bundles of hypersurfaces in almost complex manifolds

    Full text link
    A generalization to the almost complex setting of a well-known result by S. Webster is given. Namely, we prove that if Γ\Gamma is a strongly pseudoconvex hypersurface in an almost complex manifold (M,J)(M, J), then the conormal bundle of Γ\Gamma is a totally real submanifold of (T^*M, \J), where \J is the lifted almost complex structure on TMT^*M defined by Ishihara and Yano.Comment: 8 page

    Spin and orbital excitation spectrum in the Kugel-Khomskii model

    Full text link
    We discuss spin and orbital ordering in the twofold orbital degenerate superexchange model in three dimensions relevant to perovskite transition metal oxides. We focus on the particular point on the classical phase diagram where orbital degeneracy is lifted by quantum effects exclusively. Dispersion and damping of the spin and orbital excitations are calculated at this point taking into account their mutual interaction. Interaction corrections to the mean-field order parameters are found to be small. We conclude that quasi-one-dimensional Neel spin order accompanied by the uniform d_{3z^2-r^2}-type orbital ordering is stable against quantum fluctuations.Comment: 4 pages with 3 PS figures, 1 table, RevTeX, accepted to Phys. Rev. B. Rapid Communicatio

    Numerical Study of Photo-Induced Dynamics in Double-Exchange Model

    Full text link
    Photo-induced spin and charge dynamics in double-exchange model are numerically studied. The Lanczos method and the density-matrix renormalization-group method are applied to one-dimensional finite-size clusters. By photon irradiation in a charge ordered (CO) insulator associated with antiferromagnetic (AFM) correlation, both the CO and AFM correlations collapse rapidly, and appearances of new peaks inside of an insulating gap are observed in the optical spectra and the one-particle excitation spectra. Time evolutions of the spin correlation and the in-gap state are correlated with each other, and are governed by the transfer integral of conduction electrons. Results are interpreted by the charge kink/anti-kink picture and their effective motions which depend on the localized spin correlation. Pump-photon density dependence of spin and charge dynamics are also studied. Roles of spin degree of freedom are remarkable in a case of weak photon density. Implications of the numerical results for the pump-probe experiments in perovskite manganites are discussed.Comment: 16 pages, 16 figure

    On Cores and Stable Sets for Fuzzy Games

    Get PDF
    AMS classifications: 90D12; 03E72;cooperative games;decision making;fuzzy games

    Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach

    Full text link
    Astrophysical neutrinos are expected to be produced in the interactions of ultra-high energy cosmic-rays with surrounding photons. The fluxes of the astrophysical neutrinos are highly dependent on the characteristics of the cosmic-ray sources, such as their cosmological distributions. We study possible constraints on the properties of cosmic-ray sources in a model-independent way using experimentally obtained diffuse neutrino flux above 100 PeV. The semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as functions of source evolution parameter and source extension in redshift. The obtained formula converts the upper-limits on the neutrino fluxes into the constraints on the cosmic-ray sources. It is found that the recently obtained upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios with strongly evolving ultra-high energy cosmic-ray sources, and the future limits from an 1 km^3 scale detector are able to further constrain the ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic star formation rate.Comment: 9 pages, 3 figures and 1 table. Accepted by Phys. Rev.

    Prospects of Measuring General Higgs Couplings at e^+e^- Linear Colliders

    Get PDF
    We examine how accurately the general HZV couplings, with V=Z,gamma, may be determined by studying e^+e^- --> Hff-bar processes at future e^+e^- linear colliders. By using the optimal-observable method, which makes use of all available experimental information, we find out which combinations of the various HZV coupling terms may be constrained most efficiently with high luminosity. We also assess the benefits of measuring the tau-lepton helicities, identifying the bottom-hadron charges, polarizing the electron beam and running at two different collider energies. The HZZ couplings are generally found to be well constrained, even without these options, while the HZ-gamma couplings are not. The constraints on the latter may be significantly improved by beam polarization.Comment: 28 pages (LaTeX), 5 figures (axodraw and eps
    corecore