201 research outputs found

    Ubiquitin ligase Cbl-b and inhibitory Cblin peptides

    Get PDF
    This review focuses on the Cbl-b muscle atrophy-associated ubiquitin ligase and its inhibitors. Herein, the role of E3 ubiquitin ligase-associated muscle atrophy genes (atrogenes), including MAFbx-1/agrogin-1 and MuRF-1, as well as another ubiquitin ligase, Cbl-b and its inhibitors, is discussed. Cbl-b plays an important role in unloading muscle atrophy caused by spaceflight and in bedridden patients: Cbl-b ubiquitinated and induced the degradation of IRS-1, a key intermediate in the IGF-1 signaling. Furthermore, a pentapetpide (DGpYMP), inhibited Cbl-b-mediated IRS-1 ubiquitination. This peptide-based Cbl-b inhibitor Cblin and its homologous peptides in foods presumably affect muscle atrophy under such conditions

    Molecular cloning and sequencing of cDNA for rat cathepsin H Homology in pro-peptide regions of cysteine proteinases

    Get PDF
    AbstractA cDNA for rat cathepsin H was isolated and sequenced. The deduced protein comprising 333 amino acid residues is composed of a typical signal sequence (21 residues), a pro-peptide region (92 residues) and a mature enzyme region (220 residues). The amino acid sequence in the pro-peptide region, in particular, residues Phe-(βˆ’41) to Ser-(βˆ’29) of cathepsin H, is highly homologous to the pro-peptide regions of other cysteine proteinases. This homologous region may play a role in the processing of cysteine proteinases

    The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer.

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth requires a pool of proangiogenic factors in the microenvironment which propagate new vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other than the widely known, potent angiogenic factor vascular endothelial growth factor may mediate growth and metastasis of ovarian cancer. In this review we examine the role of some of these alternative factors, specifically cathepsin D and cathepsin L

    Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration

    Get PDF
    Myelinated Schwann cells in the peripheral nervous system express the p75 nerve growth factor receptor (p75NGFR) as a consequence of Schwann cell dedifferentiation during Wallerian degeneration. p75NGFR has been implicated in the remyelination of regenerating nerves. Although many studies have shown various mechanisms underlying Schwann cell dedifferentiation, the molecular mechanism contributing to the re-expression of p75NGFR in differentiated Schwann cells is largely unknown. In the present study, we found that lysosomes were transiently activated in Schwann cells after nerve injury and that the inhibition of lysosomal activation by chloroquine or lysosomal acidification inhibitors prevented p75NGFR expression at the mRNA transcriptional level in an ex vivo Wallerian degeneration model. Lysosomal acidification inhibitors suppressed demyelination, but not axonal degeneration, thereby suggesting that demyelination mediated by lysosomes may be an important signal for inducing p75NGFR expression. Tumor necrosis factor-Ξ± (TNF-Ξ±) has been suggested to be involved in regulating p75NGFR expression in Schwann cells. In this study, we found that removing TNF-Ξ± in vivo did not significantly suppress the induction of both lysosomes and p75NGFR. Thus, these findings suggest that lysosomal activation is tightly correlated with the induction of p75NGFR in demyelinating Schwann cells during Wallerian degeneration

    Lysosome-mediated processing of chromatin in senescence

    Get PDF
    Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly Ξ³-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression

    Type II cGMP-dependent protein kinase negatively regulates fibroblast growth factor signaling by phosphorylating Raf-1 at serine 43 in rat chondrosarcoma cells

    Get PDF
    Although type II cGMP-dependent protein kinase (PKGII) is a major downstream effector of cGMP in chondrocytes and attenuates the FGF receptor 3/ERK signaling pathway, its direct target proteins have not been fully explored. In the present study, we attempted to identify PKGII-targeted proteins, which are associated with the inhibition of FGF-induced MAPK activation. Although FGF2 stimulation induced the phosphorylation of ERK1/2, MEK1/2, and Raf-1 at Ser-338 in rat chondrosarcoma cells, pretreatment with a cell-permeable cGMP analog strongly inhibited their phosphorylation. On the other hand, Ser-43 of Raf-1 was phosphorylated by cGMP in a dose-dependent manner. Therefore, we examined the direct phosphorylation of Raf-1 by PKGII. Wild-type PKGII phosphorylated Raf-1 at Ser-43 in a cGMP-dependent manner, but a PKGII D412A/R415A mutant, which has a low affinity for cGMP, did not. Finally, we found that a phospho-mimic mutant, Raf-1 S43D, suppressed FGF2-induced MAPK pathway. These results suggest that PKGII counters FGF-induced MEK/ERK activation through the phosphorylation of Raf-1 at Ser-43 in chondrocytes

    A Knockout of the Tsg101 Gene Leads to Decreased Expression of ErbB Receptor Tyrosine Kinases and Induction of Autophagy Prior to Cell Death

    Get PDF
    The Tumor Susceptibility Gene 101 (Tsg101) encodes a multi-domain protein that mediates a variety of molecular and biological processes including the trafficking and lysosomal degradation of cell surface receptors. Conventional and conditional knockout models have demonstrated an essential requirement of this gene for cell cycle progression and cell viability, but the consequences of a complete ablation of Tsg101 on intracellular processes have not been examined to date. In this study, we employed mouse embryonic fibroblasts that carry two Tsg101 conditional knockout alleles to investigate the expression of ErbB receptor tyrosine kinases as well as stress-induced intracellular processes that are known to be associated with a defect in growth and cell survival. The conditional deletion of the Tsg101 gene in this well-controlled experimental model resulted in a significant reduction in the steady-state levels of the EGFR and ErbB2 but a stress-induced elevation in the phosphorylation of mitogen activated protein (MAP) kinases independent of growth factor stimulation. As part of an integrated stress response, Tsg101-deficient cells exhibited extensive remodeling of actin filaments and greatly enlarged lysosomes that were enriched with the autophagy-related protein LC3. The increase in the transcriptional activation and expression of LC3 and its association with Lamp1-positive lysosomes in a PI3K-dependent manner suggest that Tsg101 knockout cells utilize autophagy as a survival mechanism prior to their ultimate death. Collectively, this study shows that a knockout of the Tsg101 gene causes complex intracellular changes associated with stress response and cell death. These multifaceted alterations need to be recognized as they have an impact on defining particular functions for Tsg101 in processes such as signal transduction and lysosomal/endosomal trafficking

    Down Regulation of a Matrix Degrading Cysteine Protease Cathepsin L, by Acetaldehyde: Role of C/EBPΞ±

    Get PDF
    BACKGROUND: The imbalance between extra cellular matrix (ECM) synthesis and degradation is critical aspect of various hepatic pathologies including alcohol induced liver fibrosis. This study was carried out to investigate the effect of acetaldehyde on expression of an extra cellular matrix degrading protease cathepsin L (CTSL) in HepG2 cells. METHODOLOGY AND RESULTS: We measured the enzymatic activity, protein and, mRNA levels of CTSL in acetaldehyde treated and untreated cells. The binding of CAAT enhancer binding protein Ξ± (C/EBP Ξ±) to CTSL promoter and its key role in the transcription from this promoter and conferring responsiveness to acetaldehyde was established by site directed mutagenesis, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assays and siRNA technology. Acetaldehyde treatment significantly decreased CTSL activity and protein levels in HepG2 cells. A similar decrease in the mRNA levels and promoter activity was also observed. This decrease by acetaldehyde was attributed to the fall in the liver enriched transcription factor C/EBP Ξ± levels and it's binding to the CTSL promoter. Mutagenesis of C/EBP Ξ± binding motifs revealed the key role of this factor in CTSL transcription as well as conferring responsiveness to acetaldehyde. The siRNA mediated silencing of the C/EBP Ξ± expression mimicked the effect of acetaldehyde on CTSL levels and its promoter activity. It also abolished the responsiveness of this promoter to acetaldehyde. CONCLUSION: Acetaldehyde down regulates the C/EBP Ξ± mediated CTSL expression in hepatic cell lines. The decreased expression of CTSL may at least in part contribute to ECM deposition in liver which is a hallmark of alcoholic liver fibrosis

    Cathepsin L Inhibition Prevents Murine Autoimmune Diabetes via Suppression of CD8+ T Cell Activity

    Get PDF
    Background: Type 1 diabetes (T1D) is an autoimmune disease resulting from defects in central and peripheral tolerance and characterized by T cell-mediated destruction of islet b cells. To determine whether specific lysosomal proteases might influence the outcome of a T cell–mediated autoimmune response, we examined the functional significance of cathepsin inhibition on autoimmune T1D-prone non-obese diabetic (NOD) mice. Methods and Findings: Here it was found that specific inhibition of cathepsin L affords strong protection from cyclophosphamide (CY)-induced insulitis and diabetes of NOD mice at the advanced stage of CD8 + T cell infiltration via inhibiting granzyme activity. It was discovered that cathepsin L inhibition prevents cytotoxic activity of CD8 + T cells in the pancreatic islets through controlling dipeptidyl peptidase I activity. Moreover, the gene targeting for cathepsin L with application of in vivo siRNA administration successfully prevented CY-induced diabetes of NOD mice. Finally, cathepsin L mRNA expression of peripheral CD8 + T cells from NOD mice developing spontaneous T1D was significantly increased compared with that from control mice. Conclusions: Our results identified a novel function of cathepsin L as an enzyme whose activity is essential for the progression of CD8 + T cell-mediated autoimmune diabetes, and inhibition of cathepsin L as a powerful therapeutic strateg
    • …
    corecore