1 research outputs found
Correlative Information Maximization Based Biologically Plausible Neural Networks for Correlated Source Separation
The brain effortlessly extracts latent causes of stimuli, but how it does
this at the network level remains unknown. Most prior attempts at this problem
proposed neural networks that implement independent component analysis which
works under the limitation that latent causes are mutually independent. Here,
we relax this limitation and propose a biologically plausible neural network
that extracts correlated latent sources by exploiting information about their
domains. To derive this network, we choose maximum correlative information
transfer from inputs to outputs as the separation objective under the
constraint that the outputs are restricted to their presumed sets. The online
formulation of this optimization problem naturally leads to neural networks
with local learning rules. Our framework incorporates infinitely many source
domain choices and flexibly models complex latent structures. Choices of
simplex or polytopic source domains result in networks with piecewise-linear
activation functions. We provide numerical examples to demonstrate the superior
correlated source separation capability for both synthetic and natural sources.Comment: Preprint, 32 page