16 research outputs found

    Sex-specific pathways in early cardiac response to pressure overload in mice

    Get PDF
    Pressure overload (PO) first causes cardiac hypertrophy and then heart failure (HF), which are associated with sex differences in cardiac morphology and function. We aimed to identify genes that may cause HF-related sex differences. We used a transverse aortic constriction (TAC) mouse model leading to hypertrophy without sex differences in cardiac function after 2 weeks, but with sex differences in hypertrophy 6 and 9 weeks after TAC. Cardiac gene expression was analyzed 2 weeks after surgery. Deregulated genes were classified into functional gene ontology (GO) categories and used for pathway analysis. Classical marker genes of hypertrophy were similarly upregulated in both sexes (α-actin, ANP, BNP, CTGF). Thirty-five genes controlling mitochondrial function (PGC-1, cytochrome oxidase, carnitine palmitoyl transferase, acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase) had lower expression in males compared to females after TAC. Genes encoding ribosomal proteins and genes associated with extracellular matrix remodeling exhibited relative higher expression in males (collagen 3, matrix metalloproteinase 2, TIMP2, and TGFβ2, all about twofold) after TAC. We confirmed 87% of the gene expression by real-time polymerase chain reaction. By GO classification, female-specific genes were related to mitochondria and metabolism and males to matrix and biosynthesis. Promoter studies confirmed the upregulation of PGC-1 by E2. Less downregulation of metabolic genes in female hearts and increased protein synthesis capacity and deregulation of matrix remodeling in male hearts characterize the sex-specific early response to PO. These differences could contribute to subsequent sex differences in cardiac function and HF

    Crosstalk from cAMP to ERK1/2 emerges during postnatal maturation of nociceptive neurons and is maintained during aging

    No full text
    Maturation of nociceptive neurons depends on changes in transcription factors, ion channels and neuropeptides. Mature nociceptors initiate pain in part by drastically reducing the activation threshold via intracellular sensitization signaling. Whether sensitization signaling also changes during development and aging remains so far unknown. Using a novel automated microscopy approach, we quantified changes in intracellular signaling protein expression and in their signaling dynamics, as well as changes in intracellular signaling cascade wiring, in sensory neurons from newborn to senescent (24 months of age) rats. We found that nociceptive subgroups defined by the signaling components protein kinase A (PKA)-RII beta (also known as PRKAR2B) and CaMKIIa (also known as CAMK2A) developed at around postnatal day 10, the time of nociceptor maturation. The integrative nociceptor marker, PKARII beta, allowed subgroup segregation earlier than could be achieved by assessing the classical markers TRPV1 and Na(v)1.8 (also known as SCN10A). Signaling kinetics remained constant over lifetime despite in part strong changes in the expression levels. Strikingly, we found a mechanism important for neuronal memory -i.e. the crosstalk from cAMP and PKA to ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) -to emerge postnatally. Thus, maturation of nociceptors is closely accompanied by altered expression, activation and connectivity of signaling pathways known to be central for pain sensitization and neuronal memory formation

    Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons

    Get PDF
    Knowledge about the molecular structure of protein kinase A (PKA) isoforms is substantial. In contrast, the dynamics of PKA isoform activity in living primary cells has not been investigated in detail. Using a high content screening microscopy approach, we identified the RIIβ subunit of PKA-II to be predominantly expressed in a subgroup of sensory neurons. The RIIβ-positive subgroup included most neurons expressing nociceptive markers (TRPV1, NaV1.8, CGRP, IB4) and responded to pain-eliciting capsaicin with calcium influx. Isoform-specific PKA reporters showed in sensory-neuron-derived F11 cells that the inflammatory mediator PGE₂ specifically activated PKA-II but not PKA-I. Accordingly, pain-sensitizing inflammatory mediators and activators of PKA increased the phosphorylation of RII subunits (pRII) in subgroups of primary sensory neurons. Detailed analyses revealed basal pRII to be regulated by the phosphatase PP2A. Increase of pRII was followed by phosphorylation of CREB in a PKA-dependent manner. Thus, we propose RII phosphorylation to represent an isoform-specific readout for endogenous PKA-II activity in vivo, suggest RIIβ as a novel nociceptive subgroup marker, and extend the current model of PKA-II activation by introducing a PP2A-dependent basal state.status: publishe

    Synergistic regulation of serotonin and opioid signaling contribute to pain insensitivity in Na(v)1.7 knockout mice

    Get PDF
    Genetic loss of the voltage-gated sodium channel Nav1.7 (Na(v)1.7(-/-)) results in lifelong insensitivity to pain inmice and humans. One underlying cause is an increase in the production of endogenous opioids in sensory neurons. We analyzed whether Na(v)1.7 deficiency altered nociceptive heterotrimeric guanine nucleotide-binding protein-coupled receptor (GPCR) signaling, such as initiated by GPCRs that respond to serotonin (pronociceptive) or opioids (antinociceptive), in sensory neurons. We found that the nociceptive neurons of Na(v)1.7 knockout (Na(v)1.7(-/-)) mice, but not those of Na(v)1.8 knockout (Na(v)1.8(-/-)) mice, exhibited decreased pronociceptive serotonergic signaling through the 5-HT4 receptors, which are G alpha(s)-coupled GPCRs that stimulate the production of cyclic adenosinemonophosphate resulting in protein kinase A (PKA) activity, as well as reduced abundance of the RIIb regulatory subunit of PKA. Simultaneously, the efficacy of antinociceptive opioid signaling mediated by the G alpha(i)-coupled mu opioid receptors was increased. Consequently, opioids inhibited more efficiently tetrodotoxin-resistant sodium currents, which are important for pain-initiating neuronal activity in nociceptive neurons. Thus, Na(v)1.7 controls the efficacy and balance of GPCR-mediated pro-and antinociceptive intracellular signaling, such that without Na(v)1.7, the balance is shifted toward antinociception, resulting in lifelong endogenous analgesia

    Depolarization induces nociceptor sensitization by Ca(V)1.2-mediated PKA-II activation

    No full text
    Depolarization drives neuronal plasticity. However, whether depolarization drives sensitization of peripheral nociceptive neurons remains elusive. By high-content screening (HCS) microscopy, we revealed that depolarization of cultured sensory neurons rapidly activates protein kinase A type II (PKA-II) in nociceptors by calcium influx through Ca(V)1.2 channels. This effect was modulated by calpains but insensitive to inhibitors of cAMP formation, including opioids. In turn, PKA-II phosphorylated Ser1928 in the distal C terminus of Ca(V)1.2, thereby increasing channel gating, whereas dephosphorylation of Ser1928 involved the phosphatase calcineurin. Patch-clamp and behavioral experiments confirmed that depolarization leads to calcium-and PKA-dependent sensitization of calcium currents ex vivo and local peripheral hyperalgesia in the skin in vivo. Our data suggest a local activity-driven feed-forward mechanism that selectively translates strong depolarization into further activity and thereby facilitates hypersensitivity of nociceptor terminals by a mechanism inaccessible to opioids

    The bromodomain protein BRD4 regulates splicing during heat shock

    No full text
    The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNAsequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 ( HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anticancer therapies

    Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit alpha(2)delta-1 with thrombospondin-4

    No full text
    The alpha(2)delta-1 subunit of voltage-gated calcium channels binds to gabapentin and pregabalin, mediating the analgesic action of these drugs against neuropathic pain. Extracellular matrix proteins from the thrombospondin (TSP) family have been identified as ligands of alpha(2)delta-1 in the CNS. This interaction was found to be crucial for excitatory synaptogenesis and neuronal sensitisation which in turn can be inhibited by gabapentin, suggesting a potential role in the pathogenesis of neuropathic pain. Here, we provide information on the biochemical properties of the direct TSP/alpha(2)delta-1 interaction using an ELISA-style ligand binding assay. Our data reveal that full-length pentameric TSP-4, but neither TSP-5/COMP of the pentamer-forming subgroup B nor TSP-2 of the trimer-forming subgroup A directly interact with a soluble variant of alpha(2)delta-1 (alpha(2)delta-1S). Interestingly, this interaction is not inhibited by gabapentin on a molecular level and is not detectable on the surface of HEK293-EBNA cells over-expressing alpha(2)delta-1 protein. These results provide biochemical evidence that supports a specific role of TSP-4 among the TSPs in mediating the binding to neuronal a2d-1 and suggest that gabapentin does not directly target TSP/alpha(2)delta-1 interaction to alleviate neuropathic pain

    Dual Inhibition of GLUT1 and the ATR/CHK1 Kinase Axis Displays Synergistic Cytotoxicity in KRAS-Mutant Cancer Cells

    No full text
    The advent of molecularly targeted therapeutic agents has opened a new era in cancer therapy. However, many tumors rely on nondruggable cancer-driving lesions. In addition, long-lasting clinical benefits from single-agent therapies rarely occur, as most of the tumors acquire resistance over time. The identification of targeted combination regimens interfering with signaling through oncogenically rewired pathways provides a promising approach to enhance efficacy of single-agent-targeted treatments. Moreover, combination drug therapies might overcome the emergence of drug resistance. Here, we performed a focused flow cytometry-based drug synergy screen and identified a novel synergistic interaction between GLUT1-mediated glucose transport and the cell-cycle checkpoint kinases ATR and CHK1. Combined inhibition of CHK1/GLUT1 or ATR/GLUT1 robustly induced apoptosis, particularly in RAS-mutant cancer cells. Mechanistically, combined inhibition of ATR/CHK1 and GLUT1 arrested sensitive cells in S-phase and led to the accumulation of genotoxic damage, particularly in S-phase. In vivo, simultaneous inhibition of ATR and GLUT1 significantly reduced tumor volume gain in an autochthonous mouse model of KrasG12D-driven soft tissue sarcoma. Taken together, these findings pave the way for combined inhibition of GLUT1 and ATR/CHK1 as a therapeutic approach for KRAS-driven cancers. Significance: Dual targeting of the DNA damage response and glucose transport synergistically induces apoptosis in KRAS-mutant cancer, suggesting this combination treatment for clinical validation in KRAS-stratified tumor patients

    Wound-healing growth factor, basic FGF, induces Erk1/2-dependent mechanical hyperalgesia

    No full text
    Growth factors such as nerve growth factor and glial cell line-derived neurotrophic factor are known to induce pain sensitization. However, a plethora of other growth factors is released during inflammation and tissue regeneration, and many of them are essential for wound healing. Which wound-healing factors also alter the sensitivity of nociceptive neurons is not well known. We studied the wound-healing factor, basic fibroblast growth factor ( bFGF), for its role in pain sensitization. Reverse transcription polymerase chain reaction showed that the receptor of bFGF, FGFR1, is expressed in lumbar rat dorsal root ganglia (DRG). We demonstrated presence of FGFR1 protein in DRG neurons by a recently introduced quantitative automated immunofluorescent microscopic technique. FGFR1 was expressed in all lumbar DRG neurons as quantified by mixture modeling. Corroborating the mRNA and protein expression data, bFGF induced Erk1/2 phosphorylation in nociceptive neurons, which could be blocked by inhibition of FGF receptors. Furthermore, bFGF activated Erk1/2 in a dose- and time-dependent manner. Using single-cell electrophysiological recordings, we found that bFGF treatment of DRG neurons increased the current-density of Na(V)1.8 channels. Erk1/2 inhibitors abrogated this increase. Importantly, intradermal injection of bFGF in rats induced Erk1/2-dependent mechanical hyperalgesia. Perspective: Analyzing intracellular signaling dynamics in nociceptive neurons has proven to be a powerful approach to identify novel modulators of pain. In addition to describing a new sensitizing factor, our findings indicate the potential to investigate wound-healing factors for their role in nociception. (C) 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved
    corecore