41 research outputs found

    Expression of RAB4B, a protein governing endocytic recycling, is co-regulated with MHC class II genes

    Get PDF
    The small GTPase RAB4 regulates endocytic recycling, a process that contributes to Major Histocompatibility Complex (MHC)-mediated antigen presentation by specialized antigen presenting cells (APC) of the immune system. The gene encoding the RAB4B isoform of RAB4 was singled out by two complementary genome-wide screens. One of these consisted of a computer scan to identify genes containing characteristic MHC class II-related regulatory sequences. The second was the use of chromatin immunoprecipitation coupled to microarrays (ChIP-on-chip) to identify novel targets of a transcriptional co-activator called the MHC class II transactivator (CIITA). We show that the RAB4B gene is regulated by a typical MHC class II-like enhancer that is controlled directly by both CIITA and the multiprotein transcription factor complex known as the MHC class II enhanceosome. RAB4B expression is thus activated by the same regulatory machinery that is known to be essential for the expression of MHC class II genes. This molecular link between the transcriptional activation of RAB4B and MHC class II genes implies that APC boost their antigen presentation capacity by increasing RAB4-mediated endocytic recycling

    Transcription-coupled deposition of histone modifications during MHC class II gene activation

    Get PDF
    Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activation

    Transcription-coupled deposition of histone modifications during MHC class II gene activation

    Get PDF
    Posttranslational histone modifications associated with actively expressed genes are generally believed to be introduced primarily by histone-modifying enzymes that are recruited by transcription factors or their associated co-activators. We have performed a comprehensive spatial and temporal analyses of the histone modifications that are deposited upon activation of the MHC class II gene HLA-DRA by the co-activator CIITA. We find that transcription-associated histone modifications are introduced during two sequential phases. The first phase precedes transcription initiation and is characterized exclusively by a rapid increase in histone H4 acetylation over a large upstream domain. All other modifications examined, including the acetylation and methylation of several residues in histone H3, are restricted to short regions situated at or within the 5′ end of the gene and are established during a second phase that is concomitant with ongoing transcription. This second phase is completely abrogated when elongation by RNA polymerase II is blocked. These results provide strong evidence that transcription elongation can play a decisive role in the deposition of histone modification patterns associated with inducible gene activatio

    Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site

    Get PDF
    Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequenc

    Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity

    Get PDF
    FEN-1 and XPG are members of the FEN-1 family of structure-specific nucleases, which share a conserved active site. FEN-1 plays a central role in DNA replication, whereas XPG is involved in nucleotide excision repair (NER). Both FEN-1 and XPG are active on flap structures, but only XPG cleaves bubble substrates. The spacer region of XPG is dispensable for nuclease activity on flap substrates but is required for NER activity and for efficient processing of bubble substrates. Here, we inserted the spacer region of XPG between the nuclease domains of FEN-1 to test whether this domain would be sufficient to confer XPG-like substrate specificity and NER activity on a related nuclease. The resulting FEN-1-XPG hybrid protein is active on flap and, albeit at low levels, on bubble substrates. Like FEN-1, the activity of FEN-1-XPG was stimulated by a double-flap substrate containing a 1-nt 3′ flap, whereas XPG does not show this substrate preference. Although no NER activity was detected in vitro, the FEN-1-XPG hybrid displays substantial NER activity in vivo. Hence, insertion of the XPG spacer region into FEN-1 results in a hybrid protein with biochemical properties reminiscent of both nucleases, including partial NER activity

    Extensive remodeling of DC function by rapid maturation-induced transcriptional silencing

    Get PDF
    The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes—including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis—underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repressio

    Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site

    Get PDF
    Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence

    DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells

    Get PDF
    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs). RESULTS: Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules. CONCLUSIONS: The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies

    TLR-mediated up-regulation of serum retroviral gp70 is controlled by the Sgp loci of lupus-prone mice

    No full text
    The endogenous retroviral envelope glycoprotein, gp70, implicated in murine systemic lupus erythematosus (SLE), has been considered to be a product of xenotropic, polytropic (PT) and modified PT (mPT) endogenous retroviruses. It is secreted by hepatocytes like an acute phase protein, but its response is under a genetic control. Given critical roles of TLR7 and TLR9 in the pathogenesis of SLE, we assessed their contribution to the acute phase expression of serum gp70, and defined a pivotal role of the Sgp3 (serum gp70 production 3) and Sgp4 loci in this response. Our results demonstrated that serum levels of gp70 were up-regulated in lupus-prone NZB mice injected with TLR7 or TLR9 agonist at levels comparable to those induced by injection of IL-1, IL-6 or TNF. In addition, studies of C57BL/6 Sgp3 and/or Sgp4 congenic mice defined the major roles of these two loci in up-regulated production of serum gp70 during acute phase responses. Finally, the analysis of Sgp3 congenic mice strongly suggests the presence of at least two distinct genetic factors in the Sgp3 interval, one of which controlled the basal-level expression of xenotropic, PT and mPT gp70 and the other which controlled the up-regulated production of xenotropic and mPT gp70 during acute phase responses. Our results uncovered an additional pathogenic role of TLR7 and TLR9 in murine lupus nephritis by promoting the expression of nephritogenic gp70 autoantigen. Furthermore, they revealed the involvement of multiple regulatory genes for the expression of gp70 autoantigen under steady-state and inflammatory conditions in lupus-prone mice
    corecore