452 research outputs found
TAXONOMY AND EVOLUTIONARY RELATIONSHIPS WITHIN THE CALCAREOUS NANNOFOSSIL GENUS ERICSONIA IN THE UPPER PALEOCENE
Detailed distribution ranges of the genus Ericsonia were obtained in the upper Paleocene interval from two deep-sea sections, ODP Site 1262 (South Eastern Atlantic Ocean) and Site 1215 (Eastern Equatorial Pacific Ocean), and were complemented with morphometric analyses with the purpose of clarifying the taxonomy of the Paleocene species ascribed to genus. The analysis on a high-resolution sampling set at ODP Site 1262 permitted to add information about the evolutionary relationship among the taxa included in the Ericsonia lineage, whose evolutionary emergence characterize the Paleocene nannofossil assemblages. Two taxonomic units have been validated in the Paleocene, Ericsonia subpertusa and Ericsonia robusta and they turned out to not have any evolutionary link. E. robusta shows substantial morphologic variability at cross-polarized light resulting in two endmember morphotypes, E. robusta morphotype A and E. robusta morphotype B. When observed at S.E.M., the two morphotypes have placoliths with a similar structure, therefore they document intra-specific variability. This is corroborated by the presence of specimens with intermediate morphologic features between the two endmembers, throughout the distribution range. E. robusta increases in abundance concomitantly with the sharp decline of E. subpertusa in mid Chron C25n. Subsequently, the highest occurrence of E. robusta morphotype B provides a distinct biohorizon coeval to the general decline of E. robusta within the upper Paleocene nannofossil assemblage
Site U1334
Integrated Ocean Drilling Program (IODP) Site U1334 (7°59.998?N, 131°58.408?W; 4799 meters below sea level [mbsl]) (Fig. F1; Table T1) is located ~380 km southeast of previously drilled Ocean Drilling Program (ODP) Site 1218 (~42 Ma crust) in the central area drilled during the Pacific Equatorial Age Transect (PEAT) program (IODP Expedition 320/321). Site U1334 (~38 Ma crust) is situated ~100 km north of the Clipperton Fracture Zone on abyssal hill topography draped with ~280 m sediment (Fig. F2). The fabric of the abyssal hills within the sites is oriented either due north or slightly east of due north.Water depth in the vicinity of Site U1334 ranges between 5.0 and 5.1 km for the depressions between the abyssal hills. The abyssal hills range between 4.70 and 4.85 km water depth and generally show a thicker and more consistent sediment cover than the basins. In fact, a significant amount of the bathymetric difference between hills and basins is controlled by the amount of sediment cover. The comparison of sediment thickness and clarity of seismic sections led us to select a location on the middle elevation of one of the abyssal plateaus.Site U1334 sediments were estimated to have been deposited on top of late middle Eocene crust with an age of ~38 Ma and target the events bracketing the EoceneâOligocene transition with the specific aim of recovering carbonate-bearing sediments of latest Eocene age prior to a large deepening of the calcium carbonate compensation depth (CCD) that occurred during this greenhouse to icehouse transition (Kennett and Shackleton, 1976; Miller et al., 1991; Zachos et al., 1996; Coxall et al., 2005). The EoceneâOligocene transition experienced the most dramatic deepening of the Pacific CCD during the Paleogene (van Andel, 1975), which has now been shown by Coxall et al. (2005) to coincide with a rapid stepwise increase in benthic oxygen stable isotope ratios, interpreted to reflect a combination of growth of the Antarctic ice sheet and decrease in deepwater temperatures (DeConto et al., 2008; Liu et al., 2009).<br/
The EoceneâOligocene transition in the C-isotope record of the carbonate successions in the Central Mediterranean
The Eocene-Oligocene transition marks a fundamental step in the evolution of the modern climate. This climate change and the consequent major oceanic reorganisation affected the global carbon cycle, whose dynamics across this crucial interval are far from being clearly understood. In this work, the upper Eocene to lower Oligocene ÎŽ13CCarb and ÎŽ13CTOC records of a shallow-water and a hemipelagic carbonate settings within the Central Mediterranean area have been studied and discussed. The shallow-water carbon isotope signal has been analysed in the northern portion of the Apula Platform, cropping out in the Majella Mountain, Central Apennines
(Santo Spirito Formation). A coeval Umbria-Marche basinal succession has been investigated in the Massignano section (Conero area, Central Italy). The purposes of this work are: to discriminate between the global and the local (Mediterranean) signature of C-isotope record during the Oi-1 event, to correlate the regional C-isotope signal with the global record, and to evaluate the carbon cycle dynamics across the greenhouse-icehouse transition through the integration of complementary records (shallow-water vs pelagic settings, ÎŽ13CCarb vs ÎŽ13CTOC). The upper Eocene carbon isotope record of the analysed successions matches with the global signal. The overall trend shows a decrease of the ÎŽ13CCarb and a contemporary increase of the ÎŽ13CTOC. The decoupling of the two
curves is consistent with a reduced fractionation effect by primary producers that characterised the interval between the Middle Eocene Climatic Optimum and the onset of the Oi-1 event. However, regional factors superimposed the global signal. In fact, the upper Eocene basinal ÎŽ13CTOC record is marked by short-term negative spikes, which possibly represent times of higher productivity triggered by the westward subtropical Eocene Neotethys current entering from the Arabian-Eurasian gateway. On the contrary, the shallow-water record does not display these short-term productivity pulses. A change in the carbonate factory is only recorded at the Eocene-Oligocene transition, marked by a reduction of the larger benthic foraminifera and the spread of seagrass and corals. Moreover, in the shallow-water record of the Santo Spirito Formation, no major carbon isotope shift related to the Oi-1 event is recorded due to the presence of extensive slumps that disrupt the bedding. These slumps are the main evidence of the sea-level drop that occurred concomitantly with the onset of the Antarctica ice-sheet, which caused the deepening of the storm wave base and increased the instability over the entire ramp
Sub-series and sub-epochs are informal units and should continue to be omitted from the International Chronostratigraphic Chart
In June 2016 the Paleogene, Neogene, and Quaternary subcommissions (ISPS, SNS, SQS) of the International Commission on Stratigraphy (ICS) voted on whether to formalize sub-series and their geochronologic equiva-lents, sub-epochs. The vote required a 60 percent major-ity for the proposal to be forwarded to the ICS for further consideration. That majority was not achieved, albeit by a narrow margin, hence sub-series and sub-epochs are currently to be regarded as informal, and if used should carry a lower case modifier, as in lower Miocene and early Pleistocene. To accompany the vote, those who favoured continuation of informal usage were asked to prepare a short summary of the main arguments in support of their viewpoint, as were the proponents of the formalization case. Although this statement was not originally intended for publication, it is reproduced here at the request of the Former Chair of the ICS, so as to put it on record
Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system?
Abstract. To fully understand the global climate dynamics of the warm early Eocene with its reoccurring hyperthermal events, an accurate high-fidelity age model is required. The Ypresian stage (56â47.8âŻMa) covers a key interval within the Eocene as it ranges from the warmest marine temperatures in the early Eocene to the long-term cooling trends in the middle Eocene. Despite the recent development of detailed marine isotope records spanning portions of the Ypresian stage, key records to establish a complete astronomically calibrated age model for the Ypresian are still missing. Here we present new high-resolution X-ray fluorescence (XRF) core scanning iron intensity, bulk stable isotope, calcareous nannofossil, and magnetostratigraphic data generated on core material from ODP Sites 1258 (Leg 207, Demerara Rise), 1262, 1263, 1265, and 1267 (Leg 208, Walvis Ridge) recovered in the equatorial and South Atlantic Ocean. By combining new data with published records, a 405âŻkyr eccentricity cyclostratigraphic framework was established, revealing a 300â400âŻkyr long condensed interval for magnetochron C22n in the Leg 208 succession. Because the amplitudes are dominated by eccentricity, the XRF data help to identify the most suitable orbital solution for astronomical tuning of the Ypresian. Our new records fit best with the La2010b numerical solution for eccentricity, which was used as a target curve for compiling the Ypresian astronomical timescale (YATS). The consistent positions of the very long eccentricity minima in the geological data and the La2010b solution suggest that the macroscopic feature displaying the chaotic diffusion of the planetary orbits, the transition from libration to circulation in the combination of angles in the precession motion of the orbits of Earth and Mars, occurred ââŒââŻ52âŻMa. This adds to the geological evidence for the chaotic behavior of the solar system. Additionally, the new astrochronology and revised magnetostratigraphy provide robust ages and durations for Chrons C21n to C24n (47â54âŻMa), revealing a major change in spreading rates in the interval from 51.0 to 52.5âŻMa. This major change in spreading rates is synchronous with a global reorganization of the plateâmantle system and the chaotic diffusion of the planetary orbits. The newly provided YATS also includes new absolute ages for biostratigraphic events, magnetic polarity reversals, and early Eocene hyperthermal events. Our new bio- and magnetostratigraphically calibrated stable isotope compilation may act as a reference for further paleoclimate studies of the Ypresian, which is of special interest because of the outgoing warming and increasingly cooling phase. Finally, our approach of integrating the complex comprehensive data sets unearths some challenges and uncertainties but also validates the high potential of chemostratigraphy, magnetostratigraphy, and biostratigraphy in unprecedented detail being most significant for an accurate chronostratigraphy
Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating
New age data from Sr isotope analysis and both planktonic foraminifera and nannofossils are presented and discussed here for the Upper EoceneâUpper Miocene sedimentary rocks of the DeÄirmenlik (Kythrea) Group. New dating is also given of some Cretaceous and Pliocene sediments. In a revised stratigraphy the DeÄirmenlik (Kythrea) Group is divided into ten formations. Different Upper Miocene formations are developed to the north and south of a regionally important, EâW-trending syn-sedimentary fault. The samples were dated wherever possible by three independent methods, namely utilizing Sr isotopes, calcareous nannofossils and planktonic foraminifera. Some of the Sr isotopic dates are incompatible with the nannofossil and/or the planktonic foraminiferal dates. This is mainly due to reworking within gravity-deposited or current-affected sediments. When combined, the reliable age data allow an overall biostratigraphy and chronology to be erected. Several of the boundaries of previously defined formations are revised. Sr data that are incompatible with well-constrained biostratigraphical ages are commonly of Early Miocene age. This is attributed to a regional uplift event located to the east of Cyprus, specifically the collision of the Anatolian (Eurasian) and Arabian (African) plates during Early Miocene time. This study, therefore, demonstrates that analytically sound Sr isotopic ages can yield geologically misleading ages, particularly where extensive sediment reworking has occurred. Convincing ages are obtained when isotopic dating is combined with as many forms of biostratigraphical dating as possible, and this may also reveal previously unsuspected geological events (e.g. tectonic uplift or current activity)
On the duration of magnetochrons C24r and C25n and the timing of early Eocene global warming events: Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect
Five sections drilled in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge (SE Atlantic) during Ocean Drilling Program (ODP) Leg 208 resulted in the first complete early Paleogene deep-sea record. Here we present high-resolution stratigraphic records spanning a ~4.3 million yearlong interval of the late Paleocene to early Eocene. This interval includes the Paleocene-Eocene thermal maximum (PETM) as well as the Eocene thermal maximum (ETM) 2 event. A detailed chronology was developed with nondestructive X-ray fluorescence (XRF) core scanning records and shipboard color data. These records were used to refine the shipboard-derived spliced composite depth for each site and with a record from ODP Site 1051 were then used to establish a continuous time series over this interval. Extensive spectral analysis reveals that the early Paleogene sedimentary cyclicity is dominated by precession modulated by the short (100 kyr) and long (405 kyr) eccentricity cycles. Counting of precession-related cycles at multiple sites results in revised estimates for the duration of magnetochrons C24r and C25n. Direct comparison between the amplitude modulation of the precession component derived from XRF data and recent models of Earthâs orbital eccentricity suggests that the onset of the PETM and ETM2 are related to a 100-kyr eccentricity maximum. Both events are approximately a quarter of a period offset from a maximum in the 405-kyr eccentricity cycle, with the major difference that the PETM is lagging and ETM2 is leading a 405-kyr eccentricity maximum. Absolute age estimates for the PETM, ETM2, and the magnetochron boundaries that are consistent with recalibrated radiometric ages and recent models of Earthâs orbital eccentricity cannot be precisely determined at present because of too large uncertainties in these methods. Nevertheless, we provide two possible tuning options, which demonstrate the potential for the development of a cyclostratigraphic framework based on the stable 405-kyr eccentricity cycle for the entire Paleogene
Recommended from our members
Late Neogene chronology: New perspectives in high-resolution stratigraphy
We present an integrated geochronology for late Neogene time (Pliocene, Pleistocene, and Holocene Epochs) based on an analysis of data from stable isotopes, magnetostratigraphy, radiochronology, and calcareous plankton biostratigraphy. Discrepancies between recently formulated astronomical chronologies and magnetochronologies for the past 6 m.y. have been resolved on the basis of new, high-precision Ar/Ar ages in the younger part of this interval, the so-called Brunhes, Matuyama, and Gauss Epochs (= Chrons C1n-C2An; 0-3.58 Ma), and revised analysis of sea floor anomalies in the Pacific Ocean in the older part, the so-called Gilbert Epoch (= Chron C2Ar-C3r; 3.58-5.89 Ma). The magneto- and astrochronologies are now concordant back to the Chron C3r/C3An boundary at 5.89 Ma. The Neogene (Miocene, Pliocene, Pleistocene, and Holocene) and Paleogene are treated here as period/system subdivisions of the Cenozoic Era/Erathem, replacements for the antiquated terms Tertiary and Quaternary. The boundary between the Miocene and Pliocene Series (Messinian/Zanclean Stages), whose global stratotype section and point (GSSP) is currently proposed to be in Sicily, is located within the reversed interval just below the Thvera (C3n.4n) Magnetic Polarity Subchronozone with an estimated age of 5.32 Ma. The Pliocene/Pleistocene boundary, whose GSSP is located at Vrica (Calabria, Italy), is located near the top of the Olduvai (C2n) Magnetic Polarity Subchronozone with an estimated age of 1.81 Ma. The 13 calcareous nannoplankton and 48 planktonic foraminiferal datum events for the Pliocene, and 12 calcareous nannoplankton and 10 planktonic foraminiferal datum events for the Pleistocene, are calibrated to the newly revised late Neogene astronomical/geomagnetic polarity time scale
Astrochronology of the Miocene Climatic Optimum record from Ocean Drilling Program Site 959 in the eastern equatorial Atlantic
The Miocene Climatic Optimum (MCO; ~16.9â14.7 Ma) was a relatively warm interval which interrupted the Cenozoic cooling trend and bears analogies with projected near-future climate change. Evidence for MCO warming and climatic variability is dominantly based on studies from mid- to high-latitude regions and deep ocean benthic foraminiferal oxygen isotope reconstructions, whereas studies from tropical latitudes are needed to resolve latitudinal temperature gradients and ocean nutrient cycling. Sedimentary cores retrieved at Ocean Drilling Program (ODP) Site 959 (Leg 159) in the eastern equatorial Atlantic Ocean offer a near-continuous, low-latitude record spanning the Early to Middle Miocene, but age constraints were limited. To achieve an orbitally resolved age model, we generated new calcareous nannofossil and diatom biostratigraphy as well as high-resolution bulk carbonate stable carbon (ÎŽ13C) and oxygen isotope (ÎŽ18O) ratios, magnetic susceptibility (MS), weight percent CaCO3 and mean greyscale records. We record several diagnostic biostratigraphic markers and identify the well-dated onset of the MCO, Monterey Excursion (ME), Carbon Maxima (CM) events and peak warming in the bulk carbonate isotope records. An orbital age model is realized by tuning the bulk carbonate ÎŽ13C record to eccentricity extracted from the Laskar et al. (2004) astronomical solution that is consistent with the bio- and chemostratigraphic constraints. We conclude that the studied sediment record spans the Early to Middle Miocene interval between ~18.2 and 15 Ma and includes a hiatus directly prior to the onset of MCO of maximally ~700 kyr. All records reveal dominant eccentricity-paced variability, while prominent precession and obliquity paced variability is observed between ~16.9â16.1 Ma; this interval corresponds to a node in the long ~2.4 Myr eccentricity cycle. Moreover, a major shift from bio-siliceous-dominated to carbonate-rich sediments is found across the onset of the MCO (~16.9 Ma). Both lithologies represent intervals of relatively high productivity, likely associated with upwelling. Ultimately, our high-resolution record from Site 959 can provide an important opportunity for reconstructing a tropical paleoclimate record at precession-to-eccentricity resolution during the MCO
- âŠ