17 research outputs found

    Choosing an Adequate Pesticide Delivery System for Managing Pathogens with Difficult Biologies: Case Studies on <em>Diplodia corticola, Venturia inaequalis</em> and <em>Erwinia amylovora</em>

    Get PDF
    With the challenges that negatively impact tree-based agriculture, landscapes and forests, such as climate change, plant pathogen and insect range expansion, invasive species and limited new pesticides, it is important to introduce new and effective tree protection options. In the last 20 years, pathogens that invade wood i.e. vascular tissues of trees causing wilt, yellowing, premature defoliation, cankers and tree death, have been on the rise. Diplodia corticola causes Bot canker of oak species which can kill trees diminishing the valuable ecological services they provide and reducing profits from wood and cork production. Since this and similar pathogens have difficult biologies because they reside in wood and cause severe internal damage and tree death, their management is difficult or inefficient with classical pesticide application methods that cannot reach and distribute the active ingredient in vascular wood tissues. As practical management options for this and other vascular tissue pathogens of trees are limited, we evaluated efficacy of several trunk injected fungicides in control of D. corticola and compared it with the efficacy of trunk injection of similar compounds for control of Venturia inaequalis and Erwinia amylovora, as two well-studied apple tree pathogens with different or partially similar lifestyles to D. corticola, respectively

    Extent and Severity of Caliciopsis Canker in New England, USA: An Emerging Disease of Eastern White Pine (Pinus strobus L.)

    Get PDF
    Caliciopsis canker is an emerging problem in Pinus growing regions of Eastern North America. The fungal disease caused by Caliciopsis pinea is associated with overstocked stands and poor sites, but few quantitative data are available. The objective of this study, therefore, was to assess the extent and severity of Caliciopsis canker and to explore environmental variables associated with disease to identify areas at risk of damage. During 2014, 58 sites across New England with \u3e75% P. strobus basal area in public lands were surveyed. Most sites (72%) had Caliciopsis canker signs or symptoms. Caliciopsis pinea was successfully identified with molecular techniques. In sites with Caliciopsis canker, 36% of the mature pines were symptomatic. Pole sized and suppressed trees were more likely to be damaged than larger trees with dominant crown positions (p \u3c 0.05). Pinus strobus density for sites with Caliciopsis canker was 311 trees/ha (mean P. strobus stand diameter = 40 cm) compared to 220 trees/ha (mean white pine stand diameter = 43 cm) for sites without Caliciopsis canker (p = 0.1). Caliciopsis canker symptoms tended to appear more frequently in stands with excessively drained, coarse textured soils derived from glacial outwash (86%) or stands with poorly drained soils and low fertility (78%) than in stands with well drained, more fertile soils (59%) (p = 0.1). The severity of symptoms varied among soil groups and was greater for excessively drained, nutrient poor soils than for well-drained, more fertile soils (p = 0.027)

    Comparison of Diplodia Tip Blight Pathogens in Spanish and North American Pine Ecosystems

    Get PDF
    [EN] Diplodia tip blight is the most ubiquitous and abundant disease in Spanish Pinus radiata plantations. The economic losses in forest stands can be very severe because of its abundance in cones and seeds together with the low genetic diversity of the host. Pinus resinosa is not genetically diverse in North America either, and Diplodia shoot blight is a common disease. Disease control may require management designs to be adapted for each region. The genetic diversity of the pathogen could be an indicator of its virulence and spreading capacity. Our objective was to understand the diversity of Diplodia spp. in Spanish plantations and to compare it with the structure of American populations to collaborate in future management guidelines. Genotypic diversity was investigated using microsatellite markers. Eight loci (SS9-SS16) were polymorphic for the 322 isolates genotyped. The results indicate that Diplodia sapinea is the most frequent Diplodia species present in plantations of the north of Spain and has high genetic diversity. The higher genetic diversity recorded in Spain in comparison to previous studies could be influenced by the intensity of the sampling and the evidence about the remarkable influence of the sample type.This research was funded by INIA, grant number: RTA 2017-00063-C04-03, LIFE programme, grant number: LIFE14 ENV/ES/000179 and by the Basque Government, grant number FUNGITRAP 19-00031. Red pine cone collection in New England and pathogen isolation was funded by USDA Forest Service.Aragonés, A.; Manzanos, T.; Stanosz, G.; Munck, IA.; Raposo, R.; Elvira-Recuenco, M.; Berbegal Martinez, M.... (2021). Comparison of Diplodia Tip Blight Pathogens in Spanish and North American Pine Ecosystems. Microorganisms. 9(12):1-17. https://doi.org/10.3390/microorganisms9122565S11791

    Dendrochronological Analyses and Whole-Tree Dissections Reveal Caliciopsis Canker (Caliciopsis pinea) Damage Associated with the Declining Growth and Climatic Stressors of Eastern White Pine (Pinus strobus)

    No full text
    Eastern white pine (Pinus strobus) is considered a signature species in eastern North America, particularly in New England. In recent years, however, white pine has experienced increased damage due to native pathogens that reduce the species&rsquo; growth, productivity, and economic value. One disease of concern is Caliciopsis canker, caused by the fungal pathogen Caliciopsis pinea, which is associated with excessive resin production, cankers, rough bark, bark fissures/cracks, and reduced growth in white pine. Recent studies have documented the extent of Caliciopsis canker in New England and its association with soil and stocking conditions, yet few studies have focused on the biological impacts of the disease. This study used dendrochronology and whole-tree dissections to reconstruct Caliciopsis canker history in three New England white pine sites, quantify its impact on tree growth and vigor, identify pre-disposing factors, and assess potential silvicultural management options. Dendrochronology and whole-tree dissections provided a unique insight into canker damage throughout trees&rsquo; development. Canker damage was first reported in New Hampshire in the mid-1990s, yet cankers were present as far back as 1967 and have steadily increased since the mid-1980s. Increased canker damage was significantly associated with decreased live crown ratios and declining tree growth. Trees maintaining a 30% live crown ratio or greater generally experienced the least canker damage. Furthermore, peaks in canker occurrence were consistent across sites, indicating a regional synchronization of infection and damage. Canker damage was closely associated with climatic events such as droughts and a New England hurricane. The results suggest that Caliciopsis canker has been affecting white pine health over the last 40 years, and that the disease has become more prevalent in the past 20&ndash;30 years. Yet, our results suggest that if silvicultural prescriptions target low density thinnings that favor trees with higher live crown ratios (&gt;30%) and low Caliciopsis symptom severity ratings, the risk of canker damage can be reduced in white pine stands

    Thinning treatments reduce severity of foliar pathogens in eastern white pine

    No full text
    The foliar fungal pathogens associated with the disease complex known as White Pine Needle Damage (WPND) are causing widespread defoliation of eastern white pine (Pinus strobus L.) in the northeastern United States and Canada. Presently, there are no specific management recommendations for addressing declining stand health relating to WPND induced defoliations. This study aims to test the effects of thinning at two different residual stocking densities (14 and 25m2 ha−1) on mitigating the negative impacts of WPND within infected stands. To quantify the impacts of WPND on individual tree health, we generated a composite health index score using response variables measured in the field and weighted according to their association with observations of WPND severity. Post-thinning changes in disease severity were used to evaluate the effectiveness of stand thinning to reduce pathogen pressure and promote overall tree vigor. Results show that thinning had a rapid positive effect on overall tree health, with no significant difference between thinning treatment levels in the first two years following tree removal. Severity of WPND was reduced by 35% in low-density residual thinnings in the second year of the study. Our findings suggest that thinning as a silvicultural tool to reduce stocking densities within infected stands can effectively promote overall tree health and maintaining proper stocking densities is recommended for stands at risk of infection

    Impacts of White Pine Needle Damage on seasonal litterfall dynamics and wood growth of eastern white pine (Pinus strobus) in northern New England

    No full text
    White Pine Needle Damage (WPND) is a complex of foliar fungal pathogens that have established as a chronic disease impacting eastern white pine (Pinus strobus L.) stands in the northeastern United States. With long-term ecological and economic impacts in mind, it is critical to quantify the negative effects of this disease on tree and forest health in order to make informed management decisions. We measured litterfall to determine the timing and magnitude of WPND-induced defoliation across four study sites in the northeastern US between 2014–2016. We measured N concentrations of needles cast throughout the 2014 growing season to estimate total litter N flux resulting from WPND. Additionally, to quantify growth declines we measured annual basal area increment (BAI) from six symptomatic study sites in the infected region. We found that WPND-induced defoliation in the months of June and July accounted for 47% of the total annual litterfall across the study sites, often exceeding normal needle senescence in October. Foliar %N in June and July was 0.78 and 0.84% respectively, significantly higher than October concentrations of 0.40%, suggesting incomplete resorption of N during the summer months. Untimely summer defoliations resulted in a mean estimated N loss of 0.92 g N m−2 yr−1, representing 63% of the total growing season N input from foliage. Growth of symptomatic trees at all sites was reduced following outbreaks of WPND initiating between 2007–2009. Severely infected trees reduced BAI 25–73% compared to pre-outbreak years. Our results show that WPND-induced defoliation significantly alters litterfall and N dynamics of affected stands, and suggest that subsequent N limitation in addition to reduced foliar area greatly reduces annual wood growth within infected stands

    Novel Pathogen–Plant Host Interaction: <i>Colletotrichum jiangxiense</i> and <i>Fraxinus americana</i> L. (White Ash) in a Sentinel Garden in China

    No full text
    Fraxinus americana L. (white ash), a native North American tree commonly cultivated for its ornamental qualities, displayed symptoms of leaf spot disease in a sentinel garden located in Nanjing, Jiangsu, China, in 2022. This disease led to premature leaf shedding, adversely affecting the plant’s growth and substantially diminishing its ornamental value. Potential fungal pathogens were isolated from the diseased leaves and the subsequent application of Koch’s postulates confirmed the pathogenicity of the fungal isolates (BL-1, BL-2). Through a combination of multi-locus phylogenetic analysis, including ITS, ACT, ApMat, CAL, CHS-1, GAPDH, and TUB2, alongside morphological assessments, the fungus was conclusively identified as Colletotrichum jiangxiense. This represents the first record of C. jiangxiense affecting white ash, highlighting the important role of sentinel gardens in uncovering novel pathogen–plant host interactions

    Soil and Stocking Effects on Caliciopsis Canker of Pinus strobus L.

    No full text
    Soil and stand density were found to be promising predictive variables associated with damage by the emerging disease of eastern white pine, Caliciopsis canker, in a 2014 survey with randomly selected eastern white pine (Pinus strobus L.) stands. The objective of this study was to further investigate the relationship between soil and stocking in eastern white pine forests of New England by stratifying sampling across soils and measuring stand density more systematically. A total of 62 eastern white pine stands were sampled during 2015–2016. Stands were stratified across soil groups and several prism plots were established at each site to measure stand density and determine stocking. Caliciopsis canker incidence in mature trees was greater in sites with drier or shallow soils compared to sites with loamy soils and in adequately stocked stands compared to understocked stands (p &lt; 0.0001). Caliciopsis canker signs and symptoms were observed in all size classes. Live crown ratio, a measure of forest health, decreased with increasing Caliciopsis canker symptom severity. The fungal pathogen, Caliciopsis pinea Peck, was successfully isolated from cankers on trees growing in each soil group. Forest managers will need to consider damage caused by Caliciopsis canker related to stand factors such as soil and stocking when regenerating white pine stands
    corecore