61 research outputs found

    The nearby Type Ibn supernova 2015G: signatures of asymmetry and progenitor constraints

    Get PDF
    We present the results of an extensive observational campaign on the nearby Type Ibn SN 2015G, including data from radio through ultraviolet wavelengths. SN 2015G was asymmetric, showing late-time nebular lines redshifted by ∼1000 km s^(−1). It shared many features with the prototypical SN Ibn 2006jc, including extremely strong He I emission lines and a late-time blue pseudo-continuum. The young SN 2015G showed narrow P-Cygni profiles of He I, but never in its evolution did it show any signature of hydrogen – arguing for a dense, ionized and hydrogen-free circumstellar medium moving outward with a velocity of ∼1000 km s^(−1) and created by relatively recent mass-loss from the progenitor star. Ultraviolet through infrared observations show that the fading SN 2015G (which was probably discovered some 20 d post-peak) had a spectral energy distribution that was well described by a simple, single-component blackbody. Archival HST images provide upper limits on the luminosity of SN 2015G's progenitor, while non-detections of any luminous radio afterglow and optical non-detections of outbursts over the past two decades provide constraints upon its mass-loss history

    Constraints on the Progenitor of SN 2010jl and Pre-Existing Hot Dust in its Surrounding Medium

    Get PDF
    A search for the progenitor of SN~2010jl, an unusually luminous core-collapse supernova of Type~IIn, using pre-explosion {\it Hubble}/WFPC2 and {\it Spitzer}/IRAC images of the region, yielded upper limits on the UV and near-infrared (IR) fluxes from any candidate star. These upper limits constrain the luminosity and effective temperature of the progenitor, the mass of any preexisting dust in its surrounding circumstellar medium (CSM), and dust proximity to the star. A {\it lower} limit on the CSM dust mass is required to hide a luminous progenitor from detection by {\it Hubble}. {\it Upper} limits on the CSM dust mass and constraints on its proximity to the star are set by requiring that the absorbed and reradiated IR emission not exceed the IRAC upper limits. Using the combined extinction-IR emission constraints we present viable Md−R1M_d-R_1 combinations, where MdM_d and R1R_1 are the CSM dust mass and its inner radius. These depend on the CSM outer radius, dust composition and grain size, and the properties of the progenitor. The results constrain the pre-supernova evolution of the progenitor, and the nature and origin of the observed post-explosion IR emission from SN~2010jl. In particular, an η\eta~Car-type progenitor will require at least 4~mag of visual extinction to avoid detection by the {\it Hubble}. This can be achieved with dust masses ≳10−3\gtrsim 10^{-3}~\msun\ (less than the estimated 0.2-0.5~\msun\ around η\eta~Car) which must be located at distances of ≳1016\gtrsim 10^{16}~cm from the star to avoid detection by {\it Spitzer}.Comment: Accepted for publication in the ApJ. 14 pages 10 figures. The complete figure set for Figure 10 (24 images) is available in the online journa

    Asphericity, Interaction, and Dust in the Type II-P/II-L Supernova 2013ej in Messier 74

    Get PDF
    SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multi-epoch spectropolarimetry of SN 2013ej during the first 107 days, and deep optical spectroscopy and ultraviolet through infrared photometry past ~800 days. SN 2013ej exhibits the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on, and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy shows that asymmetric CSM interaction is ongoing, and the morphology of broad H-alpha emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data, but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase (abridged).Comment: Post-proof edit. Accepted to ApJ on Nov. 23 2016; 21 pages, 16 figure

    The Progenitor of Supernova 2011dh Has Vanished

    Get PDF
    We conducted Hubble Space Telescope (HST) Snapshot observations of the Type IIb Supernova (SN) 2011dh in M51 at an age of ~641 days with the Wide Field Camera 3. We find that the yellow supergiant star, clearly detected in pre-SN HST images, has disappeared, implying that this star was almost certainly the progenitor of the SN. Interpretation of the early-time SN data which led to the inference of a compact nature for the progenitor, and to the expected survival of this yellow supergiant, is now clearly incorrect. We also present ground-based UBVRI light curves obtained with the Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory up to SN age ~70 days. From the light-curve shape including the very late-time HST data, and from recent interacting binary models for SN 2011dh, we estimate that a putative surviving companion star to the now deceased yellow supergiant could be detectable by late 2013, especially in the ultraviolet. No obvious light echoes are detectable yet in the SN environment.Comment: 6 pages, new versions of the 3 figures, improved U-band SN photometry, to appear in ApJ Letter

    SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova

    Get PDF
    Supernova (SN) 2015U (also known as PSN J07285387+3349106) was discovered in NGC 2388 on 2015 Feb. 11. A rapidly evolving and luminous event, it showed effectively hydrogen-free spectra dominated by relatively narrow helium P-Cygni spectral features and it was classified as a SN Ibn. In this paper we present photometric, spectroscopic, and spectropolarimetric observations of SN 2015U, including a Keck/DEIMOS spectrum (resolution ≈\approx 5000) which fully resolves the optical emission and absorption features. We find that SN 2015U is best understood via models of shock breakout from extended and dense circumstellar material (CSM), likely created by a history of mass loss from the progenitor with an extreme outburst within ∼\sim1-2 yr of core collapse (but we do not detect any outburst in our archival imaging of NGC 2388). We argue that the high luminosity of SN 2015U was powered not through 56^{56}Ni decay but via the deposition of kinetic energy into the ejecta/CSM shock interface. Though our analysis is hampered by strong host-galaxy dust obscuration (which likely exhibits multiple components), our dataset makes SN 2015U one of the best-studied Type Ibn supernovae and provides a bridge of understanding to other rapidly fading transients, both luminous and relatively faint.Comment: 20 pages, 15 figures, 4 table
    • …
    corecore