3,175 research outputs found

    Modeling the dynamics of a tracer particle in an elastic active gel

    Full text link
    The internal dynamics of active gels, both in artificial (in-vitro) model systems and inside the cytoskeleton of living cells, has been extensively studied by experiments of recent years. These dynamics are probed using tracer particles embedded in the network of biopolymers together with molecular motors, and distinct non-thermal behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We map the different regimes of dynamics in this system, and highlight the different manifestations of activity: breakdown of the virial theorem and equipartition, different elasticity-dependent "effective temperatures" and distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments, and provide physical interpretation of existing observations, as well as predictions for future studies.Comment: 11 pages, 6 figure

    L3: On Farm systems and risk management

    No full text
    This project seeks to define the interplay between market access, crop and livestock technologies, and investment risks in water- and market-scarce environments that leads to technology adoption by farm families, enabling them to enhance food security and incomes through more efficient water use. Water efficient farm enterprises and climate risk management Innovation Platforms will be established at project sites to bring together all role players necessary to increase investments in farm management strategies to improve productivity of crop and livestock systems through improved fodder production. Investment choices matched to farmer capacities and climatic risk environment Understanding how the capacity of farmers and their ability to make use of new opportunities is affected by their wealth status, investment priorities and variable climate will assist in the design of new and more target-specific crop-livestock management strategies. Market-led technologies for smallholder farmers developed and tested The project will use market access as the driver of crop and livestock technology uptake. Market development initiatives such as contract farming, voucher-based input distribution schemes for seed and fertilizer and innovative fertilizer marketing strategies will be implemented by project partners, technically supported by research and extension and monitored for impacts across the value chain

    Generative AI in Cybersecurity

    Full text link
    The dawn of Generative Artificial Intelligence (GAI), characterized by advanced models such as Generative Pre-trained Transformers (GPT) and other Large Language Models (LLMs), has been pivotal in reshaping the field of data analysis, pattern recognition, and decision-making processes. This surge in GAI technology has ushered in not only innovative opportunities for data processing and automation but has also introduced significant cybersecurity challenges. As GAI rapidly progresses, it outstrips the current pace of cybersecurity protocols and regulatory frameworks, leading to a paradox wherein the same innovations meant to safeguard digital infrastructures also enhance the arsenal available to cyber criminals. These adversaries, adept at swiftly integrating and exploiting emerging technologies, may utilize GAI to develop malware that is both more covert and adaptable, thus complicating traditional cybersecurity efforts. The acceleration of GAI presents an ambiguous frontier for cybersecurity experts, offering potent tools for threat detection and response, while concurrently providing cyber attackers with the means to engineer more intricate and potent malware. Through the joint efforts of Duke Pratt School of Engineering, Coalfire, and Safebreach, this research undertakes a meticulous analysis of how malicious agents are exploiting GAI to augment their attack strategies, emphasizing a critical issue for the integrity of future cybersecurity initiatives. The study highlights the critical need for organizations to proactively identify and develop more complex defensive strategies to counter the sophisticated employment of GAI in malware creation

    Experimental implementation of an adiabatic quantum optimization algorithm

    Get PDF
    We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.Comment: REVTeX, 5 pages, 4 figures, improved lay-out; accepted for publication in Physical Review Letter

    Optimal static and dynamic recycling of defective binary devices

    Full text link
    The binary Defect Combination Problem consists in finding a fully working subset from a given ensemble of imperfect binary components. We determine the typical properties of the model using methods of statistical mechanics, in particular, the region in the parameter space where there is almost surely at least one fully-working subset. Dynamic recycling of a flux of imperfect binary components leads to zero wastage.Comment: 14 pages, 15 figure

    A variational approach for the Quantum Inverse Scattering Method

    Full text link
    We introduce a variational approach for the Quantum Inverse Scattering Method to exactly solve a class of Hamiltonians via Bethe ansatz methods. We undertake this in a manner which does not rely on any prior knowledge of integrability through the existence of a set of conserved operators. The procedure is conducted in the framework of Hamiltonians describing the crossover between the low-temperature phenomena of superconductivity, in the Bardeen-Cooper-Schrieffer (BCS) theory, and Bose-Einstein condensation (BEC). The Hamiltonians considered describe systems with interacting Cooper pairs and a bosonic degree of freedom. We obtain general exact solvability requirements which include seven subcases which have previously appeared in the literature.Comment: 18 pages, no eps figure
    • …
    corecore