10 research outputs found

    Small and Large Scale Granular Statics

    Full text link
    Recent experimental results on the static or quasistatic response of granular materials have been interpreted to suggest the inapplicability of the traditional engineering approaches, which are based on elasto-plastic models (which are elliptic in nature). Propagating (hyperbolic) or diffusive (parabolic) models have been proposed to replace the `old' models. Since several recent experiments were performed on small systems, one should not really be surprised that (continuum) elasticity, a macroscopic theory, is not directly applicable, and should be replaced by a grain-scale (``microscopic'') description. Such a description concerns the interparticle forces, while a macroscopic description is given in terms of the stress field. These descriptions are related, but not equivalent, and the distinction is important in interpreting the experimental results. There are indications that at least some large scale properties of granular assemblies can be described by elasticity, although not necessarily its isotropic version. The purely repulsive interparticle forces (in non-cohesive materials) may lead to modifications of the contact network upon the application of external forces, which may strongly affect the anisotropy of the system. This effect is expected to be small (in non-isostatic systems) for small applied forces and for pre-stressed systems (in particular for disordered systems). Otherwise, it may be accounted for using a nonlinear, incrementally elastic model, with stress-history dependent elastic moduli. Although many features of the experiments may be reproduced using models of frictionless particles, results demonstrating the importance of accounting for friction are presented.Comment: 10 pages, 9 figures. Accepted for publication in "Granular Matter" (special issue: 4th Int. Conf. on Conveying and Handling of Particulate Solids, Budapest, Hungary, May 2003). v2: Minor revisions to text and figure

    Microextensive Chaos of a Spatially Extended System

    Full text link
    By analyzing chaotic states of the one-dimensional Kuramoto-Sivashinsky equation for system sizes L in the range 79 <= L <= 93, we show that the Lyapunov fractal dimension D scales microextensively, increasing linearly with L even for increments Delta{L} that are small compared to the average cell size of 9 and to various correlation lengths. This suggests that a spatially homogeneous chaotic system does not have to increase its size by some characteristic amount to increase its dynamical complexity, nor is the increase in dimension related to the increase in the number of linearly unstable modes.Comment: 5 pages including 4 figures. Submitted to PR

    Physics-informed data-driven prediction of turbulent reacting flows with lyapunov analysis and sequential data assimilation

    No full text
    High-fidelity simulations of turbulent reacting flows enable scientific understanding of the physics and engineering design of practical systems. Whereas direct numerical simulation (DNS) is the most suitable numerical tool to understand the physics, under-resolved and large-eddy simulations offer a good compromise between accuracy and computational effort in the prediction of engineering flows. This compromise speeds up the computations but reduces the space-and-time accuracy of the prediction. The objective of this chapter is to (i) evaluate the predictability horizon of turbulent simulations with chaos theory, and (ii) enable the space-and-time accurate prediction of rare and transient events using a Bayesian statistical learning approach based on data assimilation. The methods are applied to DNS of Moderate or Intense Low-oxygen Dilution (MILD) combustion. The predictability provides an estimate of the time horizon within which the occurrence of ignition kernels and deflagrative modes, which are considered here as rare and transient events, can be accurately predicted. The accurate detection of ignition kernels and their evolution towards deflagrative structures are well-captured on a coarse (under-resolved) grid when data is assimilated from a costly refined DNS. Physically, such an accurate prediction is important to understand the stabilization mechanism of MILD combustion. These techniques enable the space-and-time-accurate prediction of rare and transient events in turbulent flows by combining under-resolved simulations and experimental data, for example, from engine sensors. This opens up new possibilities for on-the-fly calibration of reduced-order models for turbulent reacting flows
    corecore