1,025 research outputs found

    Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    Get PDF
    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership

    Responding to Sea Level Rise: Does Short-Term Risk Reduction Inhibit Successful Long-Term Adaptation?

    Get PDF
    Most existing coastal climate-adaptation planning processes, and the research supporting them, tightly focus on how to use land use planning, policy tools, and infrastructure spending to reduce risks from rising seas and changing storm conditions. While central to community response to sea level rise, we argue that the exclusive nature of this focus biases against and delays decisions to take more discontinuous, yet proactive, actions to adapt—for example, relocation and aggressive individual protection investments. Public policies should anticipate real estate market responses to risk reduction to avoid large costs—social and financial—when and if sea level rise and other climate-related factors elevate the risks to such high levels that discontinuous responses become the least bad alternative

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    Defining the semiclassical limit of the quantum Rabi Hamiltonian

    Full text link
    The crossover from quantum to semiclassical behavior in the seminal Rabi model of light-matter interaction still, surprisingly, lacks a complete and rigorous understanding. A formalism for deriving the semiclassical model directly from the quantum Hamiltonian is developed here. Working in a displaced Fock-state basis α,n\lvert \alpha, n \rangle, the semiclassical limit is obtained by taking α\lvert \alpha \rvert \to \infty and the coupling to zero. This resolves the discrepancy between coherent-state dynamics and semiclassical Rabi oscillations in both standard and ultrastrong coupling/driving regimes. Furthermore, it provides a framework for studying the quantum-to-classical transition, with potential applications in quantum technologies.Comment: 6 pages, 1 figure; 6 pages Supplementary Materia

    Learning Music Representations with wav2vec 2.0

    Get PDF
    Learning music representations that are general- purpose offers the flexibility to finetune several downstream tasks using smaller datasets. The wav2vec 2.0 speech representation model showed promising results in many downstream speech tasks, but has been less effective when adapted to music. In this paper, we evaluate whether pre training wav2vec 2.0 directly on music data can be a better solution instead of finetuning the speech model. We illustrate that when pre-training on music data, the discrete latent representations are able to encode the semantic meaning of musical concepts such as pitch and instrument. Our results show that finetuning wav2vec 2.0 pretrained on music data allows us to achieve promising results on music classification tasks that are competitive with prior work on audio representations. In addition, the results are superior to the pre-trained model on speech embeddings, demonstrating that wav2vec 2.0 pre-trained on music data can be a promising music representation model

    Winter 1993 observations of oceanography and sediment transport at the LEO-15 site

    Get PDF
    The NOAA National Underseas Research Program at Rutgers University is establishing a Long-term Ecosystem Observatory off New Jersey in 15 meters of water. As part of a bottom boundary layer study at this site, WHOI deployed a bottom instrument frame during the winter of 1993-94. The bottom instrument carried a current meter, a vertical array of optical back scattering sensors, temperature, pressure and conductivity sensors and an Acoustical Backscattering Sensor. The deployment was partially successful as the acoustic system failed. The other instrumentation worked well for 3 weeks returning data on winter conditions at the site. The extreme winter waves ended the experiment by tipping the instrument over on its side. The optical instrumentation was calibrated with sediment from the site, and the results from the experiment presented.Funding was provided by the National Oceanic and Atmospheric Administration through Contract No. 4-25020 to Rutgers/SUNY National Underseas Research Program

    Organizational guidance for the care of patients with head-and-neck cancer in Ontario.

    Get PDF
    Background: At the request of the Head and Neck Cancers Advisory Committee of Ontario Health (Cancer Care Ontario), a working group and expert panel of clinicians with expertise in the management of head-and-neck cancer developed the present guideline. The purpose of the guideline is to provide advice about the organization and delivery of health care services for adult patients with head-and-neck cancer. Methods: This document updates the recommendations published in the Ontario Health (Cancer Care Ontario) 2009 organizational guideline Results: To ensure that all patients have access to the highest standard of care available in Ontario, the guideline establishes the minimum requirements to maintain a head-and-neck disease site program. Recommendations are made about the membership of core and extended provider teams, minimum skill sets and experience of practitioners, cancer centre-specific and practitioner-specific volumes, multidisciplinary care requirements, and unique infrastructure demands. Conclusions: The recommendations contained in this document offer guidance for clinicians and institutions providing care for patients with head-and-neck cancer in Ontario, and for policymakers and other stakeholders involved in the delivery of health care services for head-and-neck cancer

    The coherent interaction between matter and radiation - A tutorial on the Jaynes-Cummings model

    Full text link
    The Jaynes-Cummings (JC) model is a milestone in the theory of coherent interaction between a two-level system and a single bosonic field mode. This tutorial aims to give a complete description of the model, analyzing the Hamiltonian of the system, its eigenvalues and eigestates, in order to characterize the dynamics of system and subsystems. The Rabi oscillations, together with the collapse and revival effects, are distinguishing features of the JC model and are important for applications in Quantum Information theory. The framework of cavity quantum electrodynamics (cQED) is chosen and two fundamental experiments on the coherent interaction between Rydberg atoms and a single cavity field mode are described.Comment: 22 pages, 7 figures. Tutorial. Submitted to a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Identifying critically important vascular access outcomes for trials in haemodialysis : an international survey with patients, caregivers and health professionals

    Get PDF
    BACKGROUND: Vascular access outcomes reported across haemodialysis (HD) trials are numerous, heterogeneous and not always relevant to patients and clinicians. This study aimed to identify critically important vascular access outcomes. METHOD: Outcomes derived from a systematic review, multi-disciplinary expert panel and patient input were included in a multilanguage online survey. Participants rated the absolute importance of outcomes using a 9-point Likert scale (7-9 being critically important). The relative importance was determined by a best-worst scale using multinomial logistic regression. Open text responses were analysed thematically. RESULTS: The survey was completed by 873 participants [224 (26%) patients/caregivers and 649 (74%) health professionals] from 58 countries. Vascular access function was considered the most important outcome (mean score 7.8 for patients and caregivers/8.5 for health professionals, with 85%/95% rating it critically important, and top ranked on best-worst scale), followed by infection (mean 7.4/8.2, 79%/92% rating it critically important, second rank on best-worst scale). Health professionals rated all outcomes of equal or higher importance than patients/caregivers, except for aneurysms. We identified six themes: necessity for HD, applicability across vascular access types, frequency and severity of debilitation, minimizing the risk of hospitalization and death, optimizing technical competence and adherence to best practice and direct impact on appearance and lifestyle. CONCLUSIONS: Vascular access function was the most critically important outcome among patients/caregivers and health professionals. Consistent reporting of this outcome across trials in HD will strengthen their value in supporting vascular access practice and shared decision making in patients requiring HD
    corecore