3 research outputs found

    Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L.

    Get PDF
    The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett–Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5–1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models.publishedVersio

    Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L.

    No full text
    The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett–Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5–1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models

    The Biochemical Composition and Antioxidant Properties of Fucus vesiculosus from the Arctic Region

    No full text
    Fucus vesiculosus is one of the most prominent brown algae in the shallow waters of the seas of the Arctic region (Barents (BS), White (WS), Norwegian (NS), and Irminger (IS)). The aim of this study was to determine the biochemical composition of F. vesiculosus from the Arctic at different reproductive phases, and to evaluate the antioxidant properties of F. vesiculosus extracts. The amounts of monosaccharides, phlorotannins, flavonoids, and ash and the mineral composition significantly varied in the algae. A strong correlation was established between monosaccharide, phlorotannin, and flavonoid accumulation and water salinity (Pearson’s correlation coefficients r = −0.58, 0.83, and 0.44, respectively; p < 0.05). We noted a negative correlation between the antioxidant activity and the amount of the structural monosaccharides of fucoidan (r = −0.64). A positive correlation of phlorotannins and flavonoids with antioxidant power was confirmed for all samples. The ash accumulation was relatively lower in the sterile phase for the algae from the BS and WS. The correlation between the Metal Pollution Index (MPI) and the reproductive phases was medium with high fluctuation. Meanwhile, the MPI strongly correlated with the salinity and sampling site. The gradient of the MPI values across the sea was in the following ranking order: BS < WS < NS < IS. Taken together, and based on our data on the elemental contents of F. vesiculosus, we believe that this alga does not accumulate toxic doses of elements. Therefore, the Arctic F. vesiculosus could be safely used in food and drug development as a source of active biochemical compounds and as a source of dietary elements to cover the daily nutritional requirements of humans
    corecore