5 research outputs found

    Experimental test of a trace formula for two-dimensional dielectric resonators

    Full text link
    Resonance spectra of two-dimensional dielectric microwave resonators of circular and square shapes have been measured. The deduced length spectra of periodic orbits were analyzed and a trace formula for dielectric resonators recently proposed by Bogomolny et al. [Phys. Rev. E 78, 056202 (2008)] was tested. The observed deviations between the experimental length spectra and the predictions of the trace formula are attributed to a large number of missing resonances in the measured spectra. We show that by taking into account the systematics of observed and missing resonances the experimental length spectra are fully understood. In particular, a connection between the most long-lived resonances and certain periodic orbits is established experimentally.Comment: 14 pages, 12 figures, 1 tabl

    Experimental Test of a Two-dimensional Approximation for Dielectric Microcavities

    Full text link
    Open dielectric resonators of different shapes are widely used for the manufacture of microlasers. A precise determination of their resonance frequencies and widths is crucial for their design. Most microlasers have a flat cylindrical geometry, and a two-dimensional approximation, the so-called method of the effective index of refraction, is commonly employed for numerical calculations. Our aim has been an experimental test of the precision and applicability of a model based on this approximation. We performed very thorough and accurate measurements of the resonance frequencies and widths of two passive circular dielectric microwave resonators and found significant deviations from the model predictions. From this we conclude that the model generally fails in the quantitative description of three-dimensional dielectric resonators.Comment: 10 pages, 13 figure

    Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene

    No full text
    We present measurements of transmission and reflection spectra of a microwave photonic crystal composed of 874 metallic cylinders arranged in a triangular lattice. The spectra show clear evidence of a Dirac point, a characteristic of a spectrum of relativistic massless fermions. In fact, Dirac points are a peculiar property of the electronic band structure of graphene, whose properties consequently can be described by the relativistic Dirac equation. In the vicinity of the Dirac point, the measured reflection spectra resemble those obtained by conductance measurements in scanning tunneling microscopy of graphene flakes

    Observation of a Dirac point in microwave experiments with a photonic crystal modelling graphene

    No full text
    We present measurements of transmission and reflection spectra of a microwave photonic crystal composed of 874 metallic cylinders arranged in a triangular lattice. The spectra show clear evidence of a Dirac point, a characteristic of a spectrum of relativistic massless fermions. In fact, Dirac points are a peculiar property of the electronic band structure of graphene, whose properties consequently can be described by the relativistic Dirac equation. In the vicinity of the Dirac point, the measured reflection spectra resemble those obtained by conductance measurements in scanning tunneling microscopy of graphene flakes

    From glacial refugia to the current landscape configuration: permanence, expansion and forest management of Fagus sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula)

    No full text
    corecore