58 research outputs found
Turpentine as an additive for diesel engines: experimental study on pollutant emissions and engine performance
The need for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in internal combustion engines has raised the opportunity for the use of renewable energy sources. For the progressive replacement of fossil fuels like diesel, those derived from the sustainable management of forest resources may be a good option. In Portugal, pine trees (pinus pinaster) are among the most widely cultivated tree species. Turpentine can be extracted from their sap without harming the tree. Turpentine is known to be a good fuel with a lower viscosity than regular diesel but with a comparable caloric value, boiling point and ignition characteristics, although it is not widely used as a compression ignition fuel. Moreover, recent research has highlighted the possibility of substantially increasing the turpentine yield through biotechnology, bringing it closer to economic viability. The present study investigates the performance, pollutant emissions and fuel consumption of a 1.6 L four-cylinder direct-injection diesel engine operating with several blends of commercial diesel fuel and turpentine obtained from pine trees. The aim of this study was to assess whether it would be possible to maintain or even improve the performance, fuel consumption and GHG and pollutant emissions (HC, NOx, CO and PM) of the engine with the partial incorporation of this biofuel. Turpentine blends of up to 30% in substitution of regular diesel fuel were tested. The main novelties of the present work are related to (i) the careful testing of a still-insufficiently studied fuel that could gain economical attractiveness with the recent developments in yield improvement through biotechnology and (ii) the tests conducted under fixed engine load positions typical of road and highway conditions. The addition of this biofuel only slightly impacted the engine performance parameters. However, a slightly positive effect was observed in terms of torque, with an increase of up to 7.9% at low load for the 15T85D mixture and 6.8% at high load being observed. Power registered an increase of 9% for the 15T85D mixture at low speed and an increase of 5% for the 30T70D mixture at high speed when compared to the reference fuel (commercial diesel fuel). While the efficiency and fossil GHG emissions were improved with the incorporation of turpentine, it had a mixed effect on polluting emissions such as unburned hydrocarbons (HC) and smoke (PM) and a negative effect on nitrogen oxides (NOx). NOx emissions increased by 30% for high loads and 20% for low loads, mainly as an indirect effect of the improvement in the engine performance and not so much as a consequence of the marginally higher oxygen content of turpentine relative to commercial diesel fuel.This research was funded by the following projects, institutions and funding agencies: Research Project UIDB/04077/2020 from the Mechanical Engineering and Resource Sustainability Center—MEtRICs—through Fundação para a Ciência e a Tecnologia (FCT), Norte2020, Compete2020, under the PORTUGAL 2020 Partnership Agreement, through Portuguese national funds of FCT/MCTES (PIDDAC) and the European Regional Development Fund; Research project DREAM (Dynamics of the REsources and technological Advance in harvesting Marine renewable energy), supported by the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding—UEFISCDI—grant number PN-III-P4-ID-PCE-2020-0008
EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY
The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu) content of the fruiting bodies (cap and stipe) of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea) and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS) after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and mature fruiting bodies of mushrooms and their substrate. The high concentrations of lead, chrome and cadmium (Pb: 0.25 – 1.89 mg.kg-1, Cr: 0.36 – 1.94 mg.kg-1, Cd: 0.23 – 1.13 mg.kg-1) for all collected wild edible mushrooms, were determined. These data were compared with maximum level for certain contaminants in foodstuffs established by the commission of the European Committees (EC No 466/2001). A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the accumulation coefficient (Ka). The moderately acid pH value of soil influenced the accumulation of Zn and Cd inside of the studied species. The variation of heavy metals content between edible mushrooms species is dependent upon the ability of the species to extract elements from the substrate and on the selective uptake and deposition of metals in tissue
Clinical-evolutional particularities of the cryoglobulinemic vasculitis in the case of a patient diagnosed with hepatitis C virus in the predialitic phase
Hepatitis C virus (HCV) represents a fundamental issue for public health, with long term evolution and the gradual appearance of several complications and associated pathologies. One of these pathologies is represented by cryoglobulinemic vasculitis, a disorder characterized by the appearance in the patient’s serum of the cryoglobulins, which typically precipitate at temperatures below normal body temperature (37°C) and dissolve again if the serum is heated. Here, we describe the case of a patient diagnosed with HCV that, during the evolution of the hepatic disease, developed a form of cryoglobulinemic vasculitis. The connection between the vasculitis and the hepatic disorder was revealed following treatment with interferon, with the temporary remission of both pathologies and subsequent relapse at the end of the 12 months of treatment, the patient becoming a non-responder. The particularity of the case is represented by both the severity of the vasculitic disease from its onset and the deterioration of renal function up to the predialitic phase, a situation not typical of the evolution of cryoglobulinemia. Taking into account the hepatic disorder, the inevitable evolution towards cirrhosis, and the risk of developing the hepatocellular carcinoma, close monitoring is necessary
Electronic structure and lattice dynamics of 1T-VSe: origin of the 3D-CDW
In order to characterize in detail the charge density wave (CDW) transition
of 1-VSe, its electronic structure and lattice dynamics are
comprehensively studied by means of x-ray diffraction, angle resolved
photoemission (ARPES), diffuse and inelastic x-ray scattering (IXS), and
state-of-the-art first principles density functional theory calculations.
Resonant elastic x-ray scattering (REXS) does not show any resonant enhancement
at either V or Se K-edges, indicating that the CDW peak describes a purely
structural modulation of the electronic ordering. ARPES identifies (i) a
pseudogap at TT, which leads to a depletion of the density of states
in the plane at TT, and (ii) anomalies in the electronic
dispersion reflecting a sizable impact of phonons on it. A diffuse scattering
precursor, characteristic of soft phonons, is observed at room temperature (RT)
and leads to the full collapse of the low-energy phonon () with
propagation vector (0.25 0 -0.3) r.l.u. We show that the frequency and
linewidth of this mode are anisotropic in momentum space, reflecting the
momentum dependence of the electron-phonon interaction (EPI), hence
demonstrating that the origin of the CDW is, to a much larger extent, due to
the momentum dependence EPI with a small contribution from nesting. The
pressure dependence of the soft mode remains nearly constant up to
13 GPa at RT, with only a modest softening before the transition to the
high-pressure monoclinic phase. The wide set of experimental data are
well captured by our state-of-the art first-principles anharmonic calculations
with the inclusion of van der Waals (vdW) corrections in the
exchange-correlation functional. The description of the electronics and
dynamics of VSe reported here adds important pieces of information to the
understanding of the electronic modulations of TMDs
Structural and vibrational study of pseudocubic CdIn2Se4 under compression
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/jp5077565We report a comprehensive experimental and theoretical study of the structural and vibrational properties of a-CdIn2Se4 under compression. Angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy evidence that this ordered-vacancy compound with pseudocubic structure undergoes a phase transition (7 GPa) toward a disordered rocksalt structure as observed in many other ordered-vacancy compounds. The equation of state and the pressure dependence of the Raman-active modes of this semiconductor have been determined and compared both to ab initio total energy and lattice dynamics calculations and to related compounds. Interestingly, on decreasing pressure, at similar to 2 GPa, CdIn2Se4 transforms into a spinel structure which, according to calculations, is energetically competitive with the initial pseudocubic phase. The phase behavior of this compound under compression and the structural and compressibility trends in AB(2)Se(4) selenides are discussed.This study was supported by the Spanish government MEC under Grant Nos: MAT2013-46649-C4-3-P, MAT2013-46649-C4-2-P, MAT2010-21270-C04-03/04, and CTQ2009-14596-C02-01, by MALTA Consolider Ingenio 2010 Project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-1012). A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster, and also to S. Munoz-Rodriguez for providing a data-parsing application. J.A.S. acknowledges Juan de la Cierva fellowship program for financial support.Santamaría Pérez, D.; Gomis, O.; Pereira, ALJ.; Vilaplana Cerda, RI.; Popescu, C.; Sans Tresserras, JÁ.; Manjón Herrera, FJ.... (2014). Structural and vibrational study of pseudocubic CdIn2Se4 under compression. Journal of Physical Chemistry C. 118(46):26987-26999. https://doi.org/10.1021/jp5077565S26987269991184
Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach
"This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://dx.doi.org/10.1021/jp5037926.”The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transition above 15 GPa to a disordered-rocksalt structure, whose equation of state was also obtained up to 25 GPa. In a downstroke from 25 GPa to 1 atm, our measurements indicate that CdAl2S4 does not return to the defect chalcopyrite phase; it partially retains the disordered-rocksalt phase and partially transforms into the spinel structure. The nature of the spinel structure was confirmed by the good agreement of our experimental results with our theoretical calculations. All in all, our experimental and theoretical results provide evidence that the spinel and defect chalcopyrite phases of CdAl2S4 are competitive at 1 atm. This result opens the way to the synthesis of spinel-type CdAl2S4 at near-ambient conditions.Financial support from the Spanish Consolider Ingenio 2010 Program (Project CSD2007-00045) is acknowledged. This work was also supported by Spanish MICCIN under Project MAT2010-21270-C04-03/04 and by Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time was provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the Juan de la Cierva fellowship program for financial support. AM. and P.R.-H. acknowledge S. Munoz Rodriguez for providing a data-parsing application.Sans Tresserras, JÁ.; Santamaría Pérez, D.; Popescu, C.; Gomis, O.; Manjón Herrera, FJ.; Vilaplana Cerda, RI.; Muñoz, A.... (2014). Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach. Journal of Physical Chemistry C. 118(28):15363-15374. https://doi.org/10.1021/jp5037926S15363153741182
Spatially valid data of atmospheric deposition of heavy metals and nitrogen derived by moss surveys for pollution risk assessments of ecosystems
For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations
in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different
spatial scales (European and national level as well as
landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N)
concentrations in moss in Europe (1990–2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990–2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990–2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests
Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe
Background: This paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport
models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal
percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey.
Results: Correlations between concentrations of heavy metals in moss and in modelled atmospheric deposition
were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5 km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75–100 km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of < 40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high
(= above-average) or low (= below-average) correlation coefficients.
Conclusions: LDA is an eligible method identifying and ranking boundary conditions of correlations between
atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites
- …