5 research outputs found

    Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa

    Get PDF
    Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25C,the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29C and 34C, about 3C and 7C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 298C and of savannah flies (Ghana) at 308C. Small temperature increases (less than 28C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 338C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions

    Upscaling of Land-Surface Parameters Through Inverse Stochastic SVAT-Modelling

    No full text

    Current Conditions and Projected Changes in Crop Water Demand, Irrigation Requirement, and Water Availability over West Africa

    No full text
    Climate variability and change greatly affect agricultural and water resource management over West Africa. This paper presents the current characteristics and projected change in regional crop water demand (CWD), irrigation requirement (IR), and water availability (WA) over West Africa. Observed and simulated daily rainfall, minimum temperature, maximum temperature, and evapotranspiration are used to derive the above agro-meteorological and hydrological variables. For future periods, high-resolution climate data from three regional climate models under two different scenarios, i.e., representative concentration pathway (RCP) 4.5 and 8.5, are considered. Evaluation of the characteristics of present-day CWD, IR, and WA indicated that the ensemble mean of the model-derived outputs reproduced the prevailing spatial patterns of CWD and IR. Moreover, the wetter part of the domain, especially along the southern coast, was correctly delineated from the drier northern regions, despite having biases. The ensemble model also simulated the annual cycle of water supply and the bimodal pattern of the water demand curves correctly. In terms of future projections, the outcomes from the study suggest an average increase in the CWD by up to 0.808 mm/day and IR by 1.244 mm/day towards the end of the twenty-first century, compared to the baseline period. The hot-spot areas, where there is higher projected increment in CWD and IR, are over Senegal, Southern Mali, and Western Burkina Faso. In most cases, WA is projected to decrease towards the end of the twenty-first century by −0.418 mm/day. The largest decline in WA is found to be over Guinea and most of the eastern parts of West Africa. Despite the current under-utilization of the existing groundwater resources, the threat of global warming in reducing future WA and increasing CWD suggested caution on the scale of irrigation schemes and management strategies. The outcomes from the study could be a crucial input for the agricultural and water managers for introducing effective measures to ensure sustainability of irrigated farm lands

    2019 State of Climate Services: Agriculture and Food Security

    No full text
    In 2018, the Conference of the Parties serving as the meeting of the Parties to the Paris Agreement at the 24th Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) called on the World Meteorological Organization (WMO) through its Global Framework for Climate Services (GFCS) to regularly report on the state of climate services with a view to “facilitating the development and application of methodologies for assessing adaptation needs” (Decision 11/CMA.1). This inaugural 2019 State of Climate Services Report focuses on agriculture and food security. It reviews countries’ priorities on climate services for adaptation, noting that agriculture is one of the highest, and identifies priority capacity needs. It examines capacity gaps across six components of the climate services value chain including: governance, basic systems, user interface, capacity development, provision and application of climate services, and monitoring and evaluation. The report provides case studies, examples and explanations as to the role of climate information and services to support agriculture in the face of climate variability and change, assesses gaps and makes recommendations. This analysis helps highlight both challenges and opportunities for climate service efforts aimed at promoting climate resilient development and adaptation action
    corecore