66 research outputs found

    A statistical-based approach for determining the intensity of unrest phases at Stromboli volcano (Southern Italy) using one-step-ahead forecasts of displacement time series

    Get PDF
    The evaluation of the intensity of unrest phases at active volcanoes is a crucial topic in volcano hazard studies. This is particularly troublesome in the case of persistently active volcanoes like Stromboli (Southern Italy), where intense eruptive summit activity (overflows, strong spattering, powerful explosions) has in some cases anticipated a flank eruption. In this context, a new approach for the analysis of displacement data is introduced. Daily displacements of the Stromboli crater terrace measured between January 1, 2010, and August 7, 2014, by a ground-based interferometric synthetic aperture radar system were compared, in retrospect, to displacement predictions provided by an autoregressive integrated moving average-based model. The methodology consisted in assessing when the actual displacements exceeded a fixed probability threshold for the forecasts (*95 %). Two sets of data were consequently produced: (1) series of residuals between actual displacements and model threshold (‘‘anomalies’’) and (2) series of normalized residuals between actual displacements and model threshold (‘‘normalized anomalies’’). This permitted to statistically identify and quantify the anomalous deformation at the crater terrace over the reference time interval of the analysis. Anomalies started to occur before each period of intense volcanic activity, highlighting the possibility to discern between background activity and unrest. Moreover, results indicated that the inflation of the crater terrace during the preparatory phase of the 2014 flank eruption was characterized by the greatest amount of anomalous deformation

    Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses

    Get PDF
    Predicting the time of failure is a topic of major concern in the field of geological risk management. Several approaches, based on the analysis of displacement monitoring data, have been proposed in recent years to deal with the issue. Among these, the inverse velocity method surely demonstrated its effectiveness in anticipating the time of collapse of rock slopes displaying accelerating trends of deformation rate. However, inferring suitable linear trend lines and deducing reliable failure predictions from inverse velocity plots are processes that may be hampered by the noise present in the measurements; data smoothing is therefore a very important phase of inverse velocity analyses. In this study, different filters are tested on velocity time series from four case studies of geomechanical failure in order to improve, in retrospect, the reliability of failure predictions: Specifically, three major landslides and the collapse of an historical city wall in Italy have been examined. The effects of noise on the interpretation of inverse velocity graphs are also assessed. General guidelines to conveniently perform data smoothing, in relation to the specific characteristics of the acceleration phase, are deduced. Finally, with the aim of improving the practical use of the method and supporting the definition of emergency response plans, some standard procedures to automatically setup failure alarm levels are proposed. The thresholds which separate the alarm levels would be established without needing a long period of neither reference historical data nor calibration on past failure events

    Review of ten years of volcano deformations recorded by the ground-based InSAR monitoring system at Stromboli volcano: a tool to mitigate volcano flank dynamics and intense volcanic activity

    Get PDF
    AbstractStromboli volcano (Southern Italy) is one of the most monitored volcano in the world with a surveillance network that includes a permanently sited ground-based SAR interferometer (GBInSAR). This work is the review of the GBInSAR data gained from the last decade of monitoring activity. The analysis of the entire dataset of GBInSAR measurements allowed the assessment of the deformation field of the northern part of the summit crater area and the Sciara del Fuoco depression. In detail, the main displacements recognized can be related to different factors: 1) the inflation/deflation respectively immediately before and after each new effusive event; 2) the bulging of localized sectors of the volcano involved in the vent opening; 3) the gravitational sliding of the Sciara del Fuoco infill; 4) the movement of lava flows. Accelerations in this sector are related to sheet intrusions, while the possibility of vent opening, associated with small sliding, or catastrophic flank failure are related to highly overpressurized sheets, able to produce high displacement rate in the Sciara del Fuoco.In the summit crater area, the increases in the displacement rate are related to the pressurization of the shallow conduit system, as the consequence of the variation in the magma level (magmastatic pressure) or to the lateral magma migration (lateral conduit expansion or dike intrusion) in response to the increase of the overpressure component. Fluctuations in the displacement rate in the summit crater area can be related to the magma overturning within the conduit, with the increases in displacement rate during the upwelling of less dense magma, while displacement rate decreases as the degassed magma column is pushed out from the conduit (lava flows or overflows). Instead, the decrease in the displacement rate without coeval lava outpouring could be related to the sink of the degassed magma due to density contrast between the gas-poor and the gas-charged magmas. Using the displacement rate in the summit crater area as a proxy for the variation in the pressure condition in conduit (both magmastatic and overpressure components), thresholds for the crises characterized by the occurrence of overflows (eventually associated with major explosions) and flank effusions (eventually associated with paroxysmal explosions) are identified. Small conduit overpressure will produce overflows (sometimes associated with crater-rim collapses), while large magma overpressure will laterally expand the conduit forming NE-SW striking sheets, feeding eruptive vents at the base of the summit crater area and within the Sciara del Fuoco, generating conditions of instability that can evolve into catastrophic collapse of the instable flank
    • …
    corecore